首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5771篇
  免费   457篇
  国内免费   43篇
电工技术   84篇
综合类   31篇
化学工业   1627篇
金属工艺   185篇
机械仪表   308篇
建筑科学   233篇
矿业工程   15篇
能源动力   332篇
轻工业   566篇
水利工程   125篇
石油天然气   87篇
武器工业   3篇
无线电   494篇
一般工业技术   958篇
冶金工业   173篇
原子能技术   46篇
自动化技术   1004篇
  2024年   23篇
  2023年   96篇
  2022年   146篇
  2021年   354篇
  2020年   352篇
  2019年   420篇
  2018年   520篇
  2017年   465篇
  2016年   443篇
  2015年   255篇
  2014年   447篇
  2013年   686篇
  2012年   476篇
  2011年   449篇
  2010年   290篇
  2009年   265篇
  2008年   143篇
  2007年   110篇
  2006年   72篇
  2005年   39篇
  2004年   39篇
  2003年   24篇
  2002年   25篇
  2001年   12篇
  2000年   15篇
  1999年   18篇
  1998年   5篇
  1997年   7篇
  1996年   9篇
  1995年   15篇
  1994年   3篇
  1993年   6篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   6篇
  1988年   2篇
  1986年   2篇
  1984年   6篇
  1982年   5篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1974年   2篇
  1967年   1篇
排序方式: 共有6271条查询结果,搜索用时 15 毫秒
21.
Error propagation analysis is one of the main objectives of fault injection experiments. This analysis helps designers to detect design mistakes and to provide effective mechanisms for fault tolerant systems. However, error propagation analysis requires that the chosen fault injection technique provides a high degree of observability (i.e., the ability to observe the internal values and events of a circuit after a fault is injected). Simulation-based fault injection provides a high observability adequate for error propagation analysis. However, the performance of the simulation-based technique is inadequate to handle today’s hardware complexity. As an alternative, FPGA-based fault injection can be used to accelerate the fault injection experiments, but the communication time needed for observing the circuit behavior from outside of the FPGA imposes severe limitations on the observability. In this paper, an observation technique for FPGA-based fault injection is proposed which significantly reduces the communication time as compared with previous scan-based observation techniques. Furthermore, this paper describes a SEU-fault injection technique based on a chain of parallel registers which reduces the time needed for injecting SEU faults as compared to the previous scan-based fault-injection techniques. As a case study, a 32-bit pipelined processor has been used in the fault injection experiments. The experimental results show that when a high degree of observability is required (e.g., error propagation analysis), the proposed fault injection technique is over 1166 times faster than simulation-based fault injection, whereas the traditional scan-based technique can achieve only a speedup of about 2–3 – which means that the proposed technique is about 500 times faster than the traditional scan-based technique. Such results are supported by theoretical performance analysis. This speed increase has been achieved without excessive increase in FPGA resource overhead, for example, the FPGA overhead of the proposed technique is only 2  3% higher than that of the traditional scan-based technique.  相似文献   
22.
Telemedicine is a new area based on the information and communication technology for collecting, storing, organizing, retrieving and exchanging medical information. One of the most important applications of telemedicine is indeed telesurgery in which an efficient telecommunication infrastructure between the surgery room and remote surgeons need to be established. One of the most important issues to be tackled in telesurgery is to find favorable links for routing as well as providing high Quality of Service (QoS). In this paper, an efficient model based on the hybridization of Type‐2 Fuzzy System (T2FS) and Cuckoo Optimization Algorithm (COA) over the Software Defined Networks (SDN) is proposed in order to achieve optimal and reliable routes for telesurgery application. Using T2FS, the fitness of the links is determined; then, a COA is conducted over the Constraint Shortest Path (CSP) problem to find the best routes. Delay is considered as a CSP problem which is satisfied by trying to find the paths with minimum cost. Due to the NP‐completeness of the CSP problem, an Enhanced COA (so‐called E‐COA) is proposed and utilized as a metaheuristic solver. To the best of our knowledge, this paper is the first SDN‐based communication model that applies both T2FS and E‐COA for assigning proper costs to the network's links, and solves the consequence CSP problem according to the QoS requirement for telesurgery. The model also recognizes and preserves the second‐best routes in order to keep the reliability for such a critical application. In addition to the simulations, the performance evaluation is also conducted on a real experimental scenario. Many comparisons are carried out between the proposed model and other conventional methods, and the evaluation study shows the superiority of the proposed model on all the three QoS‐related metrics, i.e. average end‐to‐end delay, packet loss ratio and PSNR.  相似文献   
23.
24.
Cloud solutions are emerging as a new suitable way of transforming traditional IT data centers to highly available and reliable computing resources for hosting critical applications and data. However, software and hardware failures are a common problem in cloud datacenters that can lead to harmful damages. In this paper, we analyze the physical server failures in the Google cloud datacenter. We study the Google cluster properties to investigate the relationship among physical servers' failure rate and jobs failure events. The failure rate of Google cluster executed jobs and servers is taken into consideration during a 29‐day period. We present a reliability model for Google cluster physical machines using the continuous time Markov chains according to this observation. We attempt to analyze the obtained model through SHARPE software packages to improve the understanding of failure events in the Google cloud cluster. We also explore the cluster availability based on parameters like steady‐state availability, steady‐state unavailability, mean time to failure, and mean time to repair in the Google cluster.  相似文献   
25.
CCGA packages for space applications   总被引:1,自引:0,他引:1  
Commercial-off-the-shelf (COTS) area array packaging technologies in high reliability versions are now being considered for applications, including use in a number of NASA electronic systems being utilized for both the Space Shuttle and Mars Rover missions. Indeed, recently a ceramic package version specifically tailored for high reliability applications was used to provide the processing power required for the Spirit and Opportunity Mars Rovers built by NASA-JPL. Both Rovers successfully completed their 3-months mission requirements and continued exploring the Martian surface for many more moths, providing amazing new information on previous environmental conditions of Mars and strong evidence that water exists on Mars.Understanding process, reliability, and quality assurance (QA) indicators for reliability are important for low risk insertion of these newly available packages in high reliability applications. In a previous investigation, thermal cycle test results for a non-functional daisy-chained peripheral ceramic column grid array (CCGA) and its plastic ball grid array (PBGA) version, both having 560 I/Os, were gathered and are presented here. Test results included environmental data for three different thermal cycle regimes (−55/125 °C, −55/100 °C, and −50/75 °C). Detailed information on these—especially failure type for assemblies with high and low solder volumes—are presented. The thermal cycle test procedure followed those recommended by IPC-9701 for tin–lead solder joint assemblies. Its revision A covers guideline thermal cycle requirements for Pb-free solder joints. Key points on this specification are also discussed.In a recent investigation a fully populated CCGA with 717 I/Os was considered for assembly reliability evaluation. The functional package is a field-programmable gate array that has much higher processing power than its previous version. This new package is smaller in dimension, has no interposer, and has a thinner column wrapped with copper for reliability improvement. This paper will also present thermal cycle test results for assemblies of this and its plastic package version with 728 I/Os, both of which were exposed to four different cycle regimes. Two of these cycle profiles are specified by IPC-9701A for tin–lead, namely, −55 to 100 °C and −55 to 125 °C. One is a cycle profile specified by Mil-Std-883, namely, −65/150 °C, generally used for ceramic hybrid packages screening and qualification. The last cycle is in the range of −120 to 85 °C, a representative of electronic systems directly exposed to the Martian environment without use in a thermal control enclosure. Per IPC-9701A, test vehicles were built using daisy chain packages and were continuously monitored and/or manually checked for opens at intervals. The effects of many process and assembly variables—including corner staking commonly used for improving resistance to mechanical loading such as drop and vibration loads—were also considered as part of the test matrix. Optical photomicrographs were taken at various thermal cycle intervals to document damage progress and behavior. Representative samples of these are presented along with cross-sectional photomicrographs at higher magnification taken by scanning electron microscopy (SEM) to determine crack propagation and failure analyses for packages.  相似文献   
26.
The rapid growth of wireless network technology such as HSDPA and WiMAX, has lead to greater demand for access to Internet via mobile hosts. Supporting mobile connection with fast and smooth roaming across heterogeneous wireless technologies has been an important challenge over past years. In this paper, a novel multilayer scheme for QoS-aware intra-domain mobility management is proposed. The mobility support capability is embedded in key components for the domain access network, namely, the Paging Access Routers and the Mobility-support Anchor Servers (MASs). The MASs are organized in three layers; starting from the top layer Superior-MASs, Middle-MASs and Inferior-MASs, respectively. The proposed scheme identified mobility support functionality, includes intra-domain anchor specification, route optimization algorithm, intra/inter-anchor mobility support, paging and authentication management. Simulation results of the proposed scheme show fair performance especially in the presence of QoS sensitive services.  相似文献   
27.
Calcium oxalate (CaOx) is the major phase in kidney stones and the primary calcium storage medium in plants. CaOx can form crystals with different lattice types, water contents, and crystal structures. However, the conditions and mechanisms leading to nucleation of particular CaOx crystals are unclear. Here, liquid-cell transmission electron microscopy and atomistic molecular dynamics simulations are used to study in situ CaOx nucleation at different conditions. The observations reveal that rhombohedral CaOx monohydrate (COM) can nucleate via a classical pathway, while square COM can nucleate via a non-classical multiphase pathway. Citrate, a kidney stone inhibitor, increases the solubility of calcium by forming calcium-citrate complexes and blocks oxalate ions from approaching calcium. The presence of multiple hydrated ionic species draws additional water molecules into nucleating CaOx dihydrate crystals. These findings reveal that by controlling the nucleation pathways one can determine the macroscale crystal structure, hydration state, and morphology of CaOx.  相似文献   
28.
A New differential current conveyor based current comparator is presented in this paper. Differential current conveyor II (DCCII) is designed, modified, and exploited as a comparator with reduced propagation delay and power consumption. New DCCII decreases propagation delay and increases comparator accuracy considerably. Simulation results using Hspice and 0.18 μm CMOS technology with 1.8V supply voltage confirms a less than 0.63 ns propagation delay at ±1 μA input current. Average power dissipation in ±1 μA input current has a value of 300 μW.  相似文献   
29.
30.
McEliece and Goldreich–Goldwasser–Halevi (GGH) cryptosystems are two instances of code and lattice-based cryptosystems whose security are based on the hardness of coding theoretic and lattice problems, respectively. However, such cryptosystems have a number of drawbacks which make them inefficient in practice. On the other hand, low density lattice codes (LDLCs) are practical lattice codes which can achieve capacity over additive white Gaussian noise channel and also can be encoded and decoded efficiently. This paper introduces a public key cryptosystem based on Latin square LDLCs, by which a relationship can be attained between code and lattice-based cryptography. In this way, we can exploit the efficient properties of codes and lattices, simultaneously to improve the security and efficiency of the proposed scheme. For instance, the security of this scheme is based on the hard problems related to lattices, i.e., closest vector problem and shortest basis problem, which in turn lead to increase the security level. On the other hand, we exploit the low complexity decoding algorithm of LDLCs to reduce the computational complexity. Moreover, this property allows using the larger values of the codeword length. Also, we use the special Gaussian vector, whose variance is upper bounded by Poltyrev bound, as the perturbation (error) vector. These strategies make the proposed scheme to be secure against the conventional cryptanalytic attacks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号