首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   9篇
  国内免费   1篇
电工技术   1篇
综合类   1篇
化学工业   71篇
金属工艺   5篇
机械仪表   4篇
建筑科学   4篇
能源动力   9篇
轻工业   18篇
水利工程   2篇
无线电   4篇
一般工业技术   55篇
冶金工业   6篇
原子能技术   2篇
自动化技术   23篇
  2024年   1篇
  2023年   6篇
  2022年   4篇
  2021年   14篇
  2020年   9篇
  2019年   12篇
  2018年   10篇
  2017年   16篇
  2016年   8篇
  2015年   5篇
  2014年   8篇
  2013年   18篇
  2012年   16篇
  2011年   24篇
  2010年   14篇
  2009年   7篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1981年   1篇
排序方式: 共有205条查询结果,搜索用时 15 毫秒
11.
BACKGROUND: Naphthenic acids are carboxylic acid compounds of oil sands wastewaters that contribute to aquatic toxicity. Biodegradation kinetics of an individual naphthenic acid compound in two types of continuous‐flow bioreactors were investigated as a means of improving remediation strategies for these compounds. RESULTS: This study evaluates the kinetics of biodegradation of trans‐4‐methy‐1‐cyclohexane carboxylic acid (trans‐4MCHCA) using two bioreactor systems and a microbial culture developed in previous work. Using a feed concentration of 500 mg L?1 the biodegradation rate of trans‐4MCHCA in the immobilized cell bioreactor was almost two orders of magnitude higher than that in a continuously stirred tank bioreactor. The maximum reaction rates of 230 mg (L d)?1 at a residence time of 1.6 d (40 h) and 22 000 mg (L d)?1 at a residence time of 2.6 h were observed in the continuously stirred tank and immobilized cell bioreactors, respectively. In a second immobilized cell system operating with a feed concentration of 250 mg L?1, a comparable maximum reaction rate (21 800 mg (L d)?1) was achieved at a residence time of 1.0 h. CONCLUSION: The use of immobilized cell bioreactors can enhance the biodegradation rate of naphthenic acid compounds by two orders of magnitude. Further, biodegradation greatly reduces the toxicity of the effluent wastewater. Copyright © 2009 Society of Chemical Industry  相似文献   
12.
Influence of two nano-size additives on electrical properties of suspension matrix of self-flowing low-cement high alumina refractory castable is investigated. For this purpose, castament FS 10 and FS 20 on the basis of polycarboxylate ether were considered. The self-flow value, workability and mechanical strength of the castable are evaluated and their relations with electrical conductivity are determined. Using these relations, the type and optimum amount of proper additive for these refractory castables are determined. It was shown that if the electrical conductivity of matrix suspension is less than 0.71 mS/cm, high alumina low-cement self-flowing refractory castable can be obtained. The best self-flow, sufficient working time and adequate mechanical strength in the castables are obtained with 0.08 wt.% FS 20.  相似文献   
13.
In this research, a modified, cost effective sol-gel procedure applied to synthesize BaTiO3 nanoparticles. XRD and electron microscopy (SEM and TEM) applied for microstructural characterization of powders. The obtained results showed that the type of precursors, their ratio and the hydrolysis conditions had a great effect on time, temperature and therefore the costs of the synthesis process. By selection, utilization of optimized precursor's type, hydrolysis conditions, fine cubic BaTiO3 nanoparticles were synthesized at low temperature and in short time span (1 h calcination at 800 °C). The proposed procedure seems to be more preferable for mass production.The result indicated that the polymorphic transformation to tetragonal (ferroelectric characteristic) occurred at 900 °C, which might be an indication of being nanosized.  相似文献   
14.
The NO/H2 reaction has been studied over a Ni loaded carbon film catalysts using in situ FTIR spectroscopy at the temperature range 25–350°C. On these catalysts, the differences in activity and selectivity were found depending on the nature of the surface functional groups. These differences were correlated with transient infrared spectral features which appeared during the reaction. It has been proved experimentally that the chemical character of the support is of vital importance during the process. The rise in NO conversion and N2 selectivity was observed when the surface of the catalysts was changed by the NH3 chemisorption. Amide and/or imide species formed due to the reduction of ammonium salts of carboxylic acids can play a significant role as active centers during the NO reduction.  相似文献   
15.
This paper reports the results from investigating the feasibility of calculating flame temperature from a natural gas-fired furnace based on blackbody radiation in the visible spectral range. If successful, the visible spectral range would provide data for multi-task applications such as emission line analysis and temperature calculation simultaneously. A probe containing a lens connected to the fiber-optic cables is inserted into the furnace and pointed towards the flame. Spectral intensity data are fed back to a spectrometer and then to a monitoring computer. The approach is first applied to various furnace types using the visible range to establish a baseline for the technique. The results for temperature calculations in the visible range are then compared with those taken in the near-IR (NIR) range under the same conditions. This comparison indicates that temperatures calculated from visible region could be as accurate as the one obtained from NIR region. Challenges associated with this technique are also discussed.  相似文献   
16.
One of the main challenges in the treatment of polycyclic aromatic hydrocarbons (PAHs) in controlled bioreactors is the hydrophobicity and low solubility of these compounds in the aqueous phase, resulting in appreciable mass transfer limitations within the bioreactor. To address this challenge, we have developed a modified roller bioreactor (Bead Mill Bioreactor) in which inert particles are used to improve mass transfer from the solid phase to the aqueous phase. Experimental results with naphthalene as a model PAH and Pseudomonas putida as a candidate bacterium indicate that both the mass transfer rate from the solid phase to liquid phase and the biodegradation rate in the Bead Mill Bioreactor (BMB) were significantly higher than those in a conventional roller bioreactor (20‐fold and 5.5‐fold, respectively). The enhancement of mass transfer was dependent on the type, size and volumetric loading of the inert particles, as well as concentration of particulate naphthalene. The highest mass transfer coefficient (kLa = 2.1 h?1) was achieved with 3 mm glass beads at a volumetric loading of 50% (particle volume/working volume) with 10 000 mg dm?3 particulate naphthalene. The maximum biodegradation rate of naphthalene attained in the bead mill bioreactor (59.2 mg dm?3 h?1 based on the working volume and 118.4 mg dm?3 h?1 based on the liquid volume) surpasses most other rates published in the literature and is equivalent to values reported for more complex bioreaction systems. The bead mill bioreactor developed in the present work not only enjoys a simple design but shows excellent performance for treatment of PAHs suspended in an aqueous phase. This fundamental information will be of significant value for future studies involving soil‐bound PAHs. Copyright © 2005 Society of Chemical Industry  相似文献   
17.
Profile is a relation between one response variable and one or more explanatory variables that represent quality of a product or performance of a process. On the other hand, process capability indices are measures to help practitioners in improving the processes to satisfy the customer's expectations. Few researches are done to account for the process capability index in the areas of profile monitoring. All of these researches are focused on process capability index in simple linear profile. In all of these methods, response variables in different levels of explanatory variable are considered, and the relationship in all range of explanatory variable is neglected. In this paper, a functional method is proposed to measure process capability index of circular profiles in all range of explanatory variable. The proposed method follows the traditional definition of process capability indices. The functional method uses reference profile, functional specification limits and functional natural tolerance limits to present a functional form of process capability indices. This functional form results in measuring the process capability in each level of explanatory variable in circular profile as well as a unique value of process capability index for circular profile. The application of the proposed method is illustrated through a real case in automotive industry. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
18.
This paper describes a solution-based technique for fabrication of varistor grade composite nanopowders. The method consists of coating major varistor dopants on the surface of the ZnO nanoparticles. As a result, a homogenous mixture of dopants and ZnO nanoparticles will be achieved. TEM results indicated that a composite layer of dopants with the average particle size of 9 nm on the surface of ZnO nanoparticles has been successfully prepared. Sintering of the coated powders was performed in temperatures as low as 850 °C and final specimens with average particle size of 900 nm and density of 98.5% were achieved. In comparison to conventional mixing, varistors prepared from coated nanopowders exhibited superior electrical properties and microstructure homogeneity. The improvement of electrical properties can be attributed to small grain size, homogenous distribution of dopants and elimination of large Bi-Pockets. In addition, the processing route of schottky barrier formation is quite different from what is generally considered as the method of barrier formation in ZnO grain boundaries.  相似文献   
19.
Nanocrystalline Y3− x MM x Fe5O12 powders (MM denotes Misch-metal, x =0.0, 0.25, 0.5, 0.75, and 1.0) were synthesized by a sol–gel combustion method. Magnetic properties and crystalline structures were investigated using X-ray diffraction (XRD), a vibrating sample magnetometer (VSM), and a scanning electron microscope. The XRD patterns showed that the single-phase garnet of Y3− x MM x Fe5O12 was formed at x values ≤1.0. The saturation magnetization of powders increased with decreasing MM content and reached the maximum value at Y3Fe5O12. The crystallite size of powders calcined at 800°C for 3 h was in the range of 38–53 nm.  相似文献   
20.
The zebrafish embryo is a vertebrate well suited for visualizing nanoparticles at high resolution in live animals. Its optical transparency and genetic versatility allow noninvasive, real‐time observations of vascular flow of nanoparticles and their interactions with cells throughout the body. As a consequence, this system enables the acquisition of quantitative data that are difficult to obtain in rodents. Until now, a few studies using the zebrafish model have only described semiquantitative results on key nanoparticle parameters. Here, a MACRO dedicated to automated quantitative methods is described for analyzing important parameters of nanoparticle behavior, such as circulation time and interactions with key target cells, macrophages, and endothelial cells. Direct comparison of four nanoparticle (NP) formulations in zebrafish embryos and mice reveals that data obtained in zebrafish can be used to predict NPs' behavior in the mouse model. NPs having long or short blood circulation in rodents behave similarly in the zebrafish embryo, with low circulation times being a consequence of NP uptake into macrophages or endothelial cells. It is proposed that the zebrafish embryo has the potential to become an important intermediate screening system for nanoparticle research to bridge the gap between cell culture studies and preclinical rodent models such as the mouse.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号