首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   693篇
  免费   36篇
  国内免费   6篇
电工技术   11篇
化学工业   180篇
金属工艺   32篇
机械仪表   31篇
建筑科学   3篇
矿业工程   3篇
能源动力   61篇
轻工业   37篇
水利工程   5篇
石油天然气   3篇
无线电   71篇
一般工业技术   159篇
冶金工业   69篇
自动化技术   70篇
  2024年   4篇
  2023年   14篇
  2022年   29篇
  2021年   44篇
  2020年   41篇
  2019年   25篇
  2018年   35篇
  2017年   41篇
  2016年   30篇
  2015年   23篇
  2014年   51篇
  2013年   62篇
  2012年   36篇
  2011年   39篇
  2010年   47篇
  2009年   26篇
  2008年   34篇
  2007年   25篇
  2006年   20篇
  2005年   11篇
  2004年   9篇
  2003年   11篇
  2002年   9篇
  2001年   12篇
  2000年   6篇
  1999年   6篇
  1998年   3篇
  1997年   5篇
  1996年   6篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   7篇
  1991年   1篇
  1990年   3篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1983年   1篇
排序方式: 共有735条查询结果,搜索用时 46 毫秒
101.
Coal is the most abundant energy source, and around 40% of the world's electricity is produced by coal combustion. The emission generated through it put a constraint on power production by coal combustion. There is a need to reduce the emissions generated through it to utilize the enormous energy of coal for power production. Detailed understanding of various aspects of coal combustion is required to reduce the emissions from coal‐fired furnaces. The aim of present paper is to review various aspects of pulverized coal combustion such as oxy‐fuel combustion, co‐combustion of coal and biomass, emissions from pulverized coal furnaces, ash formation and deposition, and carbon capture and sequestration (CCS) technologies to outline the progress made in these aspects. Both experimental and numerical aspects are included in this review. This review also discusses the thermodynamic aspects of the combustion process. Furthermore, the effect of various submodels such as devolatilization models, char combustion models, radiation models, and turbulent models on the process of pulverized coal combustion has been investigated in this paper.  相似文献   
102.

With the intensification of Globalization, customers’ environment-friendly attitude and stringent environmental regulations, the manufacturers have been orienting their manufacturing and other value additive processes towards the development of more environment-friendly products and use of relevant processes including taking back of used products after their end-of-use or end-of-life from the end users. Remanufacturing is one of the prominent and popular options. Remanufacturing perhaps has drawn maximum attention because of its economic viability and environmental cleanliness. The remanufacturing operation depends upon the quality and quantity of the used. Better the quality lesser the remanufacturing cost. A remanufacturer is unaware about the condition of used product before its acquisition. It may also be noted that the remanufactured product may be taken after a period of its use by users. So it is really difficult to judge how many cycles does the product go for remanufacturing. This has drawn the attention of the authors and the problem is studied with developing some mechanism on the possible frequency of the remanufacturing of a new product. This paper is a study report on this area of research which is expected to contribute immensely to the remanufacturing business.

  相似文献   
103.
Precise control of the topology of metal nanocrystals and appropriate modulation of the metal–semiconductor heterostructure is an important way to understand the relationship between structure and material properties for plasmon‐induced solar‐to‐chemical energy conversion. Here, a bottom‐up wet chemical approach to synthesize Au/Ni2P heterostructures via Pt‐catalyzed quasi‐epitaxial overgrowth of Ni on Au nanorods (NR) is presented. The structural motif of the Ni2P is controlled using the aspect ratio of the Au NR and the effective micelle concentration of the C16TAB capping agent. Highly ordered Au/Pt/Ni2P nanostructures are employed as the photoelectrocatalytic anode system for water splitting. Electrochemical and ultrafast absorption spectroscopy characterization indicates that the structural motif of the Ni2P (controlled by the outer‐shell deposition of Ni) helps to manipulate hot electron transfer during surface plasmon decay. With optimized Ni2P thickness, Pt‐tipped Au NR with an aspect ratio of 5.2 exhibits a geometric current density of 10 mA cm?2 with an overpotential of 140 mV. The photoanode displays unprecedented long‐term stability with continuous chronoamperometric performance of 50 h at an input potential of 1.5 V with over 30 days. This work provides definitive guidance for designing plasmonic–catalytic nanomaterials for enhanced solar‐to‐chemical energy conversion.  相似文献   
104.
By means of theory and experiments, the application capability of nickel ditelluride (NiTe2) transition‐metal dichalcogenide in catalysis and nanoelectronics is assessed. The Te surface termination forms a TeO2 skin in an oxygen environment. In ambient atmosphere, passivation is achieved in less than 30 min with the TeO2 skin having a thickness of about 7 Å. NiTe2 shows outstanding tolerance to CO exposure and stability in water environment, with subsequent good performance in both hydrogen and oxygen evolution reactions. NiTe2‐based devices consistently demonstrate superb ambient stability over a timescale as long as one month. Specifically, NiTe2 has been implemented in a device that exhibits both superior performance and environmental stability at frequencies above 40 GHz, with possible applications as a receiver beyond the cutoff frequency of a nanotransistor.  相似文献   
105.
We present the results of magnetization and magneto-transport measurements in the superconducting state of an as-cast Nb\(_{75}\)Zr\(_{25}\) alloy. We also report the microstructure of our sample at various length scales by using optical, scanning electron and transmission electron microscopies. The information of microstructure is used to understand the flux pinning properties in the superconducting state within the framework of collective pinning. The magneto-transport measurements show a non-Arrhenius behaviour of the temperature- and field-dependent resistivity across the resistive transition and is understood in terms of a model for viscous flow of disordered solids which is popularly known as the ‘shoving model’. The activation energy for flux flow is assumed to be mainly the elastic energy stored in the flux-line lattice. The scaling of pinning force density indicates the presence of two pinning mechanisms of different origins. The elastic constants of the flux-line lattice are used to estimate the length scale of vortex lattice movement, or the volume displaced by the flux-line lattice. It appears that the vortex lattice displacement estimated from elastic energy considerations is of the same order of magnitude as that of the flux bundle hopping length during flux flow. Our results could provide possible directions for establishing a framework where vortex matter and glass-forming liquids or amorphous solids can be treated in a similar manner for understanding the phenomenon of viscous flow in disordered solids or more generally the pinning and depinning properties of elastic manifolds in random media. It is likely that the vortex molasses scenario is more suited to explain the vortex dynamics in conventional low-T\(_C\) superconductors.  相似文献   
106.
Gas turbines have wide application as prime movers in transportation and power generating sectors, most of which are driven by fossil fuels like kerosene. The conventional fuels are associated with problems of air pollution, and the fuel reserves are getting depleted gradually. Addition of ethanol in kerosene leads to better spraying characteristics. The present work deals with the spray characteristics of pure kerosene and 10%-ethanol-blended (by volume) kerosene using a novel gas-turbine hybrid atomizer. Here the inner air and outer air enter in the same and opposite directions, respectively, with respect to the fuel flow direction into the atomizer and a high swirling effect occurs outside the nozzle. The fuel stream is sandwiched between two annular air streams and the flow rate of inner and outer air is varied continuously. Various spray stages like distorted pencil, onion, tulip and fully developed spray regimes have been observed. The breakup length, cone angle and sheet width of the fuel stream are analysed directly from backlit imaging for different fuel and air flow rates. From the image processing, it is observed that breakup occurs at an early stage for 10%-ethanol-blended kerosene due to low viscosity of ethanol. It is also observed that at higher air flow rate, breakup occurs at an early stage due to turbulent nature of the fuel stream.  相似文献   
107.
Interest in the development of new generation injectable bone cements having appropriate mechanical properties, biodegradability, and bioactivity has been rekindled with the advent of nanoscience. Injectable bone cements made with calcium sulfate (CS) are of significant interest, owing to its compatibility and optimal self-setting property. Its rapid resorption rate, lack of bioactivity, and poor mechanical strength serve as a deterrent for its wide application. Herein, a significantly improved CS-based injectable bone cement (modified calcium sulfate termed as CSmod), reinforced with various concentrations (0–15%) of a conductive nanocomposite containing gold nanodots and nanohydroxyapatite decorated reduced graphene oxide (rGO) sheets (AuHp@rGO), and functionalized with vancomycin, is presented. The piezo-responsive cement exhibits favorable injectability and setting times, along with improved mechanical properties. The antimicrobial, osteoinductive, and osteoconductive properties of the CSmod cement are confirmed using appropriate in vitro studies. There is an upregulation of the paracrine signaling mediated crosstalk between mesenchymal stem cells and human umbilical vein endothelial cells seeded on these cements. The ability of CSmod to induce endothelial cell recruitment and augment bone regeneration is evidenced in relevant rat models. The results imply that the multipronged activity exhibited by the novel-CSmod cement would be beneficial for bone repair.  相似文献   
108.

Random variation in buried oxide thickness strongly affects the digital performance of ultra-thin body germanium-on-insulator MOSFETs. Dependencies of threshold voltage, ON-current, OFF-current and subthreshold slope of ultra-thin body germanium-on-insulator MOSFETs on three different BOX dielectrics are examined by employing well-calibrated Synopsys TCAD. The variation of threshold voltage and ON-current becomes less sensitive with high-k BOX dielectrics whereas smaller variation of OFF-current is observed for the device with low-k BOX dielectrics. The subthreshold slope remains almost unaltered for all BOX dielectrics. Furthermore, a positive substrate bias is found to suppress variability of digital performance parameters of GeOI p-MOSFETs.

  相似文献   
109.
Clone has emerged as a controversial term in software engineering research and practice. The impact of clones is of great importance from software maintenance perspectives. Stability is a well investigated term in assessing the impacts of clones on software maintenance. If code clones appear to exhibit a higher instability (i.e., higher change-proneness) than non-cloned code, then we can expect that code clones require higher maintenance effort and cost than non-cloned code. A number of studies have been done on the comparative stability of cloned and non-cloned code. However, these studies could not come to a consensus. While some studies show that code clones are more stable than non-cloned code, the other studies provide empirical evidence of higher instability of code clones. The possible reasons behind these contradictory findings are that different studies investigated different aspects of stability using different clone detection tools on different subject systems using different experimental setups. Also, the subject systems were not of wide varieties. Emphasizing these issues (with several others mentioned in the motivation) we have conducted a comprehensive empirical study where we have - (i) implemented and investigated seven existing methodologies that explored different aspects of stability, (ii) used two clone detection tools (NiCad and CCFinderX) to implement each of these seven methodologies, and (iii) investigated the stability of three types (Type-1, Type-2, Type-3) of clones. Our investigation on 12 diverse subject systems covering three programming languages (Java, C, C#) with a list of 8 stability assessment metrics suggest that (i) cloned code is often more unstable (change-prone) than non-cloned code in the maintenance phase, (ii) both Type 1 and Type 3 clones appear to exhibit higher instability than Type 2 clones, (iii) clones in Java and C programming languages are more change-prone than the clones in C#, and (iv) changes to the clones in procedural programming languages seem to be more dispersed than the changes to the clones in object oriented languages. We also systematically replicated the original studies with their original settings and found mostly equivalent results as of the original studies. We believe that our findings are important for prioritizing code clones from management perspectives.  相似文献   
110.
The emergence of Dirac semimetals has stimulated growing attention, owing to the considerable technological potential arising from their peculiar exotic quantum transport related to their nontrivial topological states. Especially, materials showing type-II Dirac fermions afford novel device functionalities enabled by anisotropic optical and magnetotransport properties. Nevertheless, real technological implementation has remained elusive so far. Definitely, in most Dirac semimetals, the Dirac point lies deep below the Fermi level, limiting technological exploitation. Here, it is shown that kitkaite (NiTeSe) represents an ideal platform for type-II Dirac fermiology based on spin-resolved angle-resolved photoemission spectroscopy and density functional theory. Precisely, the existence of type-II bulk Dirac fermions is discovered in NiTeSe around the Fermi level and the presence of topological surface states with strong (≈50%) spin polarization. By means of surface-science experiments in near-ambient pressure conditions, chemical inertness towards ambient gases (oxygen and water) is also demonstrated. Correspondingly, NiTeSe-based devices without encapsulation afford long-term efficiency, as demonstrated by the direct implementation of a NiTeSe-based microwave receiver with a room-temperature photocurrent of 2.8 µA at 28 GHz and more than two orders of magnitude linear dynamic range. The findings are essential to bringing to fruition type-II Dirac fermions in photonics, spintronics, and optoelectronics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号