首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97551篇
  免费   20496篇
  国内免费   3321篇
电工技术   4826篇
技术理论   2篇
综合类   4472篇
化学工业   25915篇
金属工艺   3989篇
机械仪表   4955篇
建筑科学   6809篇
矿业工程   1835篇
能源动力   2447篇
轻工业   11853篇
水利工程   1659篇
石油天然气   3119篇
武器工业   618篇
无线电   14169篇
一般工业技术   17751篇
冶金工业   3325篇
原子能技术   725篇
自动化技术   12899篇
  2024年   227篇
  2023年   1083篇
  2022年   2105篇
  2021年   3116篇
  2020年   3552篇
  2019年   4788篇
  2018年   4798篇
  2017年   5472篇
  2016年   5658篇
  2015年   6651篇
  2014年   7245篇
  2013年   8920篇
  2012年   7002篇
  2011年   7168篇
  2010年   6842篇
  2009年   6595篇
  2008年   6073篇
  2007年   5446篇
  2006年   4922篇
  2005年   4014篇
  2004年   3036篇
  2003年   2657篇
  2002年   2509篇
  2001年   2239篇
  2000年   2034篇
  1999年   1420篇
  1998年   841篇
  1997年   703篇
  1996年   646篇
  1995年   577篇
  1994年   473篇
  1993年   374篇
  1992年   256篇
  1991年   230篇
  1990年   163篇
  1989年   123篇
  1988年   104篇
  1987年   70篇
  1986年   65篇
  1985年   37篇
  1983年   40篇
  1982年   35篇
  1917年   58篇
  1916年   48篇
  1912年   40篇
  1911年   46篇
  1907年   33篇
  1906年   44篇
  1905年   45篇
  1904年   51篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
A facile and effective method was proposed to prepare the molecularly imprinted fluorescence sensor with carbon quantum dots, which were modified vinyl groups by acrylic acid on the surface. The obtained fluorescence composite material was investigated by transmission electron microscope and Fourier transform infrared spectra. After the experimental conditions were optimized, a linear range of 1.0–60 μmol L−1 was obtained and the detection limit was 0.17 μmol L−1. The novel fluorescence sensor can be successfully used to detect tetracycline in real samples. This study provides a convenient strategy for selective recognition and rapid detection of tetracycline in the complex environment.  相似文献   
102.
103.
In this study, solvent‐free nanofibrous electrolytes were fabricated through an electrospinning method. Polyethylene oxide (PEO), lithium perchlorate and ethylene carbonate were used as polymer matrix, salt and plasticizer respectively in the electrolyte structures. Keggin‐type hetero polyoxometalate (Cu‐POM@Ru‐rGO, Ni‐POM@Ru‐rGO and Co‐POM@Ru‐rGO (POM, polyoxometalate; rGO, reduced graphene oxide)) nanoparticles were synthesized and inserted into the PEO‐based nanofibrous electrolytes. TEM and SEM analyses were carried out for further evaluation of the synthesized filler structures and the electrospun nanofibre morphologies. The fractions of free ions and crystalline phases of the as‐spun electrolytes were estimated by obtaining Fourier transform infrared and XRD spectra, respectively. The results showed a significant improvement in the ionic conductivity of the nanofibrous electrolytes by increasing filler concentrations. The highest ionic conductivity of 0.28 mS cm?1 was obtained by the introduction of 0.49 wt% Co‐POM@Ru‐rGO into the electrospun electrolyte at ambient temperature. Compared with solution‐cast polymeric electrolytes, the electrospun electrolytes present superior ionic conductivity. Moreover, the cycle stability of the as‐spun electrolytes was clearly improved by the addition of fillers. Furthermore, the mechanical strength was enhanced with the insertion of 0.07 wt% fillers to the electrospun electrolytes. The results implied that the prepared nanofibres are good candidates as solvent‐free electrolytes for lithium ion batteries. © 2020 Society of Chemical Industry  相似文献   
104.
In this study, yttrium iron garnet co-doped with Zn and Zr atoms with a chemical formula Y3ZnxZrxFe(5−2x)O12 (x = 0.0-0.3) has been successfully prepared by the solid-state reaction method. The effects of doping concentration on the microstructure, crystal structure, magnetic properties, and dielectric properties of Y3ZnxZrxFe(5−2x)O12 were investigated. The microstructure analysis indicates that co-doping of YIG with Zn and Zr can effectively reduce the grain size of the ceramic. The crystal structure results reveal that the doping concentration of Zn–Zr has substantial influence on the lattice parameters of YIG, such as, increases the lattice constant, crystal cell size, and interplanar spacing. However, the second phase of ZrO2 appears once ≥ 0.15. Additionally, the dielectric properties of YIG ferrite can be regulated using this Zn–Zr co-doping method. Zn–Zr co-doping can improve the dielectric stability and reduce the dielectric loss at high temperature. The magnetization measurement shows that the saturation magnetization is stabilized at x < 0.15, and the magnetic loss is decreased with the increase in the doping concentration. Overall, the findings show that the ceramic with x = 0.1 exhibits better properties included high saturation magnetization (24.607 emu/g), low magnetic loss (0.0025 @ 1 MHz), and relatively low dielectric loss (496 @ 400°C).  相似文献   
105.
Three kinds of ethylene-octene copolymers (POE) were melt-blended with high-density polyethylene (PE-HD) in different proportions. Detailed characterizations were conducted to analyze their structural differences of POE and its effects in toughening PE-HD. The higher molecular weight POE can improve the toughness of PE-HD. 60:40 PE-HD/POE is elongated to break up to 700% while impact strength is 84.7 kJ/m2 at −30°C, which is 21-fold of PE-HD. In the brittle to ductile transition (BDT) during impact, the fracture mechanism changes from the crazing mode to the shear yield-plastic deformation mode. The BDT temperature decreases as the POE molecular weight and its content increase. The interface strength in tension is estimated to access their effects. The Boltzmann-type models were successfully extended to describe the typical S-shaped curves in BDT of notched impact strength vs POE content or temperature. The supplementary decay model is suggested for the attenuation in toughening. Transition map in impact is proposed to select the use range of composition (c ) and temperature (T ) for high toughness. The curves are converted into 3D graph of T -c -impact strength for illustrating their coupling-separate effects, and further into the contour map of impact strength in T -c space for finding their partial equivalence.  相似文献   
106.
This study assessed the collection efficiency (CE) of two popularly used sampling devices (BioSampler and Coriolis sampler) for fungal aerosols. Phosphate‐buffered saline (PBS) supplemented with or without surfactant (Tween‐20, Tween‐80, or Triton X‐100) and antifoam agent was prepared and used as collection liquids. The agar impactor (BioStage) was simultaneously operated with liquid‐based samplers to collect fungi from seven sites located at a university building, public library, and animal farming. Fungal concentrations determined by liquid samplers were divided by those by BioStage, and the ratio values represented CE. Results indicate that the CE of BioSampler was superior to that of Coriolis (P = 0.0001) and the PBS containing surfactant collected fungi better than that without surfactant (P < 0.0001), whereas antifoam agent showed no influence (P = 0.8). Moreover, fungal concentrations determined by BioSampler with surfactant‐added PBS were statistically indifferent from those by BioStage (P > 0.05) with a Spearman correlation coefficient of 0.81‐0.83 (P < 0.01). In addition to sampler and collection liquid, sampling location was also identified as a significant CE factor (P = 0.006), implying potential influences by fungal genera in the studied fields. Overall, BioSampler with surfactant‐supplemented PBS (eg, Triton X‐100) is recommended considering the great CE and compatibility with a variety of analytical assays.  相似文献   
107.
In this work, we report the tuning effect of the Si substitution on the magnetic and high frequency electromagnetic properties of R2Fe17 compounds and their paraffin composites. It is found that the introduction of Si can remarkably improve the magnetic and electromagnetic properties of the R2Fe17 compounds, making the R2Fe17–xSix-paraffin composites excellent microwave absorption materials (MAMs). By introducing the Si element, their saturation magnetizations decrease slightly, while much higher Curie temperatures are obtained. Furthermore, better impedance match is reached due to the decrease of the high-frequency permittivity ε′ by about 40%–50%, which finally enhances the performance of the microwave absorption. The peak frequency (fRL) of the reflection loss (RL) curve moves toward high frequency domain and the qualified bandwidth (QB, RL ≤ ?10 dB) increases remarkably. The maximum QB of 3.3 GHz (12.0–15.3 GHz) is obtained for the Sm1.5Y0.5Fe15Si2-paraffin composite (d = 1.0 mm) and the maximum RL of ?53.6 dB is achieved for Nd2Fe15Si2-paraffin composite (d = 2.2 mm), both surpassing most of the reported MAMs. Additionally, a distinguished dielectric microwave absorption peak is observed, which further increases the QB in these composites.  相似文献   
108.
109.
Class I hydrophobin Vmh2, a peculiar surface active and versatile fungal protein, is known to self‐assemble into chemically stable amphiphilic films, to be able to change wettability of surfaces, and to strongly adsorb other proteins. Herein, a fast, highly homogeneous and efficient glass functionalization by spontaneous self‐assembling of Vmh2 at liquid–solid interfaces is achieved (in 2 min). The Vmh2‐coated glass slides are proven to immobilize not only proteins but also nanomaterials such as graphene oxide (GO) and quantum dots (QDs). As models, bovine serum albumin labeled with Alexa 555 fluorophore, anti‐immunoglobulin G antibodies, and cadmium telluride QDs are patterned in a microarray fashion in order to demonstrate functionality, reproducibility, and versatility of the proposed substrate. Additionally, a GO layer is effectively and homogeneously self‐assembled onto the studied functionalized surface. This approach offers a quick and simple alternative to immobilize nanomaterials and proteins, which is appealing for new bioanalytical and nanobioenabled applications.  相似文献   
110.
A facile sol–gel procedure has been developed for the synthesis of colloidal alumina nanocrystals. For the first time, optical characterization procedures were employed to study the quantum confinement effects in optical properties of the prepared Al2O3 sol. Accordingly, the hyperbolic band model was used to determine the optical band gap of colloidal alumina nanocrystals. X‐Ray diffraction pattern was used to study the crystallographic phase of the dried gel. Morphological characterization was performed using scanning electron microscopy (SEM). Inductively Coupled Plasma (ICP) emission spectroscopy was used to determination purity of the Al2O3 powder. High‐resolution TEM showed that the diameter of colloidal nanocrystals is about 10 nm. Photoluminescence spectroscopy demonstrated that quantum yields for colloidal nanocrystals are 68% with 300 nm excitation wavelength. The experimental observations confirm that highly stable alumina sol with strong UV emission was synthesized. The mentioned optical properties have not been reported before.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号