首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   458篇
  免费   9篇
  国内免费   1篇
电工技术   5篇
化学工业   88篇
金属工艺   19篇
机械仪表   11篇
建筑科学   17篇
矿业工程   1篇
能源动力   37篇
轻工业   14篇
水利工程   5篇
石油天然气   3篇
无线电   86篇
一般工业技术   80篇
冶金工业   62篇
原子能技术   1篇
自动化技术   39篇
  2023年   8篇
  2022年   13篇
  2021年   24篇
  2020年   11篇
  2019年   17篇
  2018年   16篇
  2017年   12篇
  2016年   15篇
  2015年   2篇
  2014年   11篇
  2013年   22篇
  2012年   16篇
  2011年   20篇
  2010年   18篇
  2009年   17篇
  2008年   21篇
  2007年   16篇
  2006年   12篇
  2005年   10篇
  2004年   9篇
  2003年   13篇
  2002年   10篇
  2001年   11篇
  2000年   4篇
  1999年   11篇
  1998年   9篇
  1997年   9篇
  1996年   7篇
  1995年   4篇
  1994年   5篇
  1993年   6篇
  1992年   8篇
  1991年   12篇
  1990年   12篇
  1989年   2篇
  1987年   4篇
  1986年   2篇
  1985年   7篇
  1984年   11篇
  1983年   3篇
  1982年   8篇
  1981年   4篇
  1980年   4篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
  1963年   1篇
  1957年   1篇
排序方式: 共有468条查询结果,搜索用时 562 毫秒
71.
General design of optical chemical nanosensors is needed to develop efficient sensing systems with high flexibility, and low capital cost for control recognition of toxic analytes. Here, we designed optical chemical nanosensors for simple, high‐speed detection of multiple toxic metal ions. The systematic design of the nanosensors was based on densely patterned chromophores with intrinsic mobility, namely, “building‐blocks” onto three‐dimensional (3D) nanoscale structures. The ability to precisely modify the nanoscale pore surfaces by using a broad range of chromophores that have different molecular sizes and characteristics enables detection of multiple toxic ions. A key feature of this building‐blocks design strategy is that the surface functionality and good adsorption characteristics of the fabricated nanosensor arrays enabled the development of “pool‐on‐surface” sensing systems in which high flux of the metal analytes across the probe molecules was achieved without significant kinetic hindrance. Such a sensing design enabled sensitive recognition of metal ions up to sub‐picomolar detection limits (~10?11 mol dm?3), for first time, with rapid response time within few seconds. Moreover, because these sensing pools exhibited long‐term stability, reversibility and selectivity in detecting most pollutant cations, for example, Cr(VI), Pb(II), Co(II), and Pd(II) ions, they are practical and inexpensive. The key result in our study is that the pool‐on‐surface design for optical nanosensors exhibited significant ion‐selective ability of these target ions from environmental samples and waste disposals.  相似文献   
72.
The integration of actively‐functional receptors into nanoscale networks outperformed competent detection devices and other ion‐sensing designs. Synthesis of azo chromophores with long hydrophobic tails showed an ecofriendly sensing and an extreme selectivity for divalent mercury analytes. In order to tailor the tip to HgII ion‐sensing functionality, we manipulated the chromophores into nanoscale membrane discs, which led to small, easy‐to‐use optical sensor strips. The design of these hydrophobic probes into ordered pore‐based membranes transformed the ion‐sensing systems into smart, stable assemblies and portable laboratory assays. The nanosensor membrane strips with chemical and mechanical stability allowed for reversible, stable and reusable detectors without any structural damage, even under rigorous chemical treatment for several numbers of repeated cycles. The optical membrane strips provided HgII ion‐sensing recognition for both cost‐ and energy‐saving systems. Indeed, the synthetic strips proved to have an efficient ability for various analytical applications, targeting especially for on‐site and in situ chemical analyses, and for continuous monitoring of toxic HgII ions. On the proximity‐sensing front, these miniaturized nanomembrane strips can revolutionize the consumer and industrial market with the introduction of the probe surface‐mount naked‐eye ion‐sensor strips.  相似文献   
73.
The performance of multijunction solar cells has been measured over a range of temperatures and illumination intensities. Temperature coefficients have been extracted for three‐junction cell designs that are in production and under development. A simple diode model is applied to the three‐junction performance as a means to predict performance under operating conditions outside the test range. These data may be useful in guiding the future optimization of concentrator solar cells and systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
74.
75.
A multipurpose wear testing apparatus has been designed, constructed and calibrated. The apparatus is primarily an impact wear testing device, but it may also be used for vibratory and oscillatory wear experimentation. The system utilizes a versatile displacement- and force-controlled device, which allows accurate control and measurement of the load cycles and their frequencies and the relative normal and transverse velocities between the wear surfaces as well as their time of contact. Features of this design permit testing at elevated frequencies and investigation of the effect of individual parameters on the wear process. These features include a facility to manipulate the system stiffness, the ability to control the impact and rotational velocities independently, feedback to maintain a constant nominal stress parameter, the ability to use spherical or cylindrical wear specimens and a method of applying the load and relative transverse motion in a constant, random or prescribed manner. The design facilitates modifications to include lubrication and environmental control, measurement of friction forces and fretting wear capabilities. Some initial results are included.  相似文献   
76.
Abstract

Introduction: Periodontal disease broadly defines group of conditions in which the supportive structure of the tooth (periodontium) is destroyed. Recent studies suggested that the anti-diabetic drug metformin hydrochloride (MF) has an osteogenic effect and is beneficial for the management of periodontitis.

Objective: Development of strong mucoadhesive multiple layer film loading small dose of MF for intra-pocket application.

Methodology: Multiple layer film was developed by double casting followed by compression method. Either 6% carboxy methyl cellulose sodium (CMC) or sodium alginate (ALG) constituted the inner drug (0.6%) loaded layer. Thiolated sodium alginate (TSA; 2 or 4%) constituted the outer drug free layers to enhance mucoadhesion and achieve controlled drug release. Optimized formulation was assessed clinically on 20 subjects.

Results: Films were uniform, thin and hard enough for easy insertion into periodontal pockets. Based on water uptake and in vitro drug release, CMC based film with 4% TSA as an outer layer was the optimized formulation with enhanced mucoadhesion and controlled drug release (83.73% over 12?h). SEM showed the effective fabrication of the triple layer film in which connective lines between the layers could be observed. FTIR examination suggests possibility of hydrogen bonding between the –NH groups of metformin and –OH groups of CMC. DSC revealed the presence of MF mainly in the amorphous form. Clinical results indicated improvement of all clinical parameters six months post treatment.

Conclusion: The results suggested that local application of the mucoadhesive multiple layer films loaded with metformin hydrochloride was able to manage moderate chronic periodontitis.  相似文献   
77.
Atomically thin materials face an ongoing challenge of scalability, hampering practical deployment despite their fascinating properties. Tin monosulfide (SnS), a low-cost, naturally abundant layered material with a tunable bandgap, displays properties of superior carrier mobility and large absorption coefficient at atomic thicknesses, making it attractive for electronics and optoelectronics. However, the lack of successful synthesis techniques to prepare large-area and stoichiometric atomically thin SnS layers (mainly due to the strong interlayer interactions) has prevented exploration of these properties for versatile applications. Here, SnS layers are printed with thicknesses varying from a single unit cell (0.8 nm) to multiple stacked unit cells (≈1.8 nm) synthesized from metallic liquid tin, with lateral dimensions on the millimeter scale. It is reveal that these large-area SnS layers exhibit a broadband spectral response ranging from deep-ultraviolet (UV) to near-infrared (NIR) wavelengths (i.e., 280–850 nm) with fast photodetection capabilities. For single-unit-cell-thick layered SnS, the photodetectors show upto three orders of magnitude higher responsivity (927 A W−1) than commercial photodetectors at a room-temperature operating wavelength of 660 nm. This study opens a new pathway to synthesize reproduceable nanosheets of large lateral sizes for broadband, high-performance photodetectors. It also provides important technological implications for scalable applications in integrated optoelectronic circuits, sensing, and biomedical imaging.  相似文献   
78.
The investigation of local thermal transport rate in the nanolubricants is significant. These lubricants are broadly used in environmental pollution, mechanical engineering and in the paint industry due to high thermal performance rate. Therefore, thermal transport in ZnO-SAE50 nanolubricant under the impacts of heat generation/absorption is conducted. The colloidal suspension is flowing between parallel stretching disks in which the lower disk is positioned at z = 0 and upper disk apart from distance d. The problem is transformed in dimensionless version via described similarity transforms. In the next stage, an analytical technique (VPM) is implemented for the solution purpose. The graphical results against multiple flow parameters were furnished over the region of interest and explained comprehensively. It is imperative to mention that the results are plotted for ZnO-SAE50 and conventional liquid as well. Further, rapid motion of the fluid is perceived against high Reynolds and γ parameters. The wall shear stresses at the upper end rises for multiple Reynolds and γ while; decrement is detected at the lower end. The significant contribution of an internal heat source is noted for thermal performance rate at the upper end. Foremost, the local heat transport rate declines at the lower disk. By altering Reynolds number, prompt heat transfer rate is gained at the upper disk and increasing behavior of the local heat transport rate is slow at the lower disk. From the study, it is concluded that the nanolubricants have high thermal characteristics. Therefore, such fluids are reliable to use in above stated areas.  相似文献   
79.
In this study, magnetohydrodynamic (MHD) three-dimensional (3D) flow of alumina (Al2O3) and copper (Cu) nanoparticles of an electrically conducting incompressible fluid in a rotating frame has been investigated. The shrinking surface generates the flow that also has been examined. The single-phase (i.e., Tiwari and Das) model is implemented for the hybrid nanofluid transport phenomena. Results for alumina and copper nanomaterials in the water base fluid are achieved. Boundary layer approximations are used to reduce governing partial differential (PDEs) system into the system of the ordinary differential equations (ODEs). The three-stage Lobatto IIIa method in bvp4c solver is applied for solutions of the governing model. Graphical results have been shown to examine how velocity and temperature fields are influenced by various applied parameters. It has been found that there are two branches for certain values of the suction/injection parameter b: The rise in copper volumetric concentration improved the velocity of hybrid nanofluid in the upper branch. The heat transfer rate improved for the case of hybrid nanofluid as compared to the viscous fluid and simple nanofluid.  相似文献   
80.
Recently, many researchers have tried to develop a robust, fast, and accurate algorithm. This algorithm is for eye-tracking and detecting pupil position in many applications such as head-mounted eye tracking, gaze-based human-computer interaction, medical applications (such as deaf and diabetes patients), and attention analysis. Many real-world conditions challenge the eye appearance, such as illumination, reflections, and occasions. On the other hand, individual differences in eye physiology and other sources of noise, such as contact lenses or make-up. The present work introduces a robust pupil detection algorithm with and higher accuracy than the previous attempts for real-time analytics applications. The proposed circular hough transform with morphing canny edge detection for Pupillometery (CHMCEP) algorithm can detect even the blurred or noisy images by using different filtering methods in the pre-processing or start phase to remove the blur and noise and finally the second filtering process before the circular Hough transform for the center fitting to make sure better accuracy. The performance of the proposed CHMCEP algorithm was tested against recent pupil detection methods. Simulations and results show that the proposed CHMCEP algorithm achieved detection rates of 87.11, 78.54, 58, and 78 according to Świrski, ExCuSe, Else, and labeled pupils in the wild (LPW) data sets, respectively. These results show that the proposed approach performs better than the other pupil detection methods by a large margin by providing exact and robust pupil positions on challenging ordinary eye pictures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号