首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   4篇
电工技术   1篇
化学工业   3篇
机械仪表   2篇
能源动力   6篇
轻工业   1篇
无线电   5篇
一般工业技术   10篇
冶金工业   13篇
原子能技术   7篇
自动化技术   2篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2017年   2篇
  2014年   2篇
  2013年   2篇
  2011年   3篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2005年   1篇
  2004年   3篇
  2003年   5篇
  2001年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1986年   1篇
  1976年   1篇
排序方式: 共有50条查询结果,搜索用时 312 毫秒
11.
Mesoporous Co3O4 particles are prepared by using mesoporous silica KIT-6 (with double gyroid Ia-3d symmetry) as a hard-template and Co(No3)2 x 6H2O as an inorganic precursor. In the former section, we investigate the effect of the calcination temperatures at which the Co salts are converted into Co3O4 inside the mesopores on the textural parameters of the products. The results of N2 adsorption-desorption analysis indicates that the calcination temperatures do not obviously affect the textural parameters such as the surface areas and pore volumes. However, when the calcination temperature reaches 800 degrees C, the mesostructural ordering is dramatically decreased, resulting in the reduction of the surface areas and pore volumes. After 800 degrees C calcination, the formation of large Co3O4 grains is partially confirmed on the particle surface by SEM observation. The grain size is much larger than the mesopore size of the original KIT-6, meaning the crystal growth is continuously occurred by breaking the rigid silica frameworks. In the latter section, we discuss the effect of the calcination temperatures and textural parameters on the catalytic activity for CO oxidation by both steady state and kinetic measurements. All mesoporous Co3O4 particles show a high catalytic activity, for example, -72 degrees C for sample calcined at 450 degrees C. Only 10 degrees C difference in T50 (the temperature of 50% conversion of CO) is found between the samples with the highest and lowest catalytic activity. The values of activation energy (Ea) and pre-exponential factor (A) per unit area are almost the same between two samples calcined at 450 degrees C and 800 degrees C. It is demonstrated that calcination process can not alter the essential catalytic property of mesoporous Co3O4 particles.  相似文献   
12.
Changes in mechanical property of Ni under irradiation by 3 GeV protons were estimated by multi-scale modeling. The code consisted of four parts. The first part was based on the Particle and Heavy-Ion Transport code System (PHITS) code for nuclear reactions, and modeled the interactions between high energy protons and nuclei in the target. The second part covered atomic collisions by particles without nuclear reactions. Because the energy of the particles was high, subcascade analysis was employed. The direct formation of clusters and the number of mobile defects were estimated using molecular dynamics (MD) and kinetic Monte-Carlo (kMC) methods in each subcascade. The third part considered damage structural evolutions estimated by reaction kinetic analysis. The fourth part involved the estimation of mechanical property change using three-dimensional discrete dislocation dynamics (DDD). Using the above four part code, stress-strain curves for high energy proton irradiated Ni were obtained.  相似文献   
13.
Annealed Zn1−xMgxO/Cu(In,Ga)Se2 (CIGS) interfaces have been characterized by ultraviolet light excited time-resolved photoluminescence (TRPL). The TRPL lifetime of the Zn1−xMgxO/CIGS film increased on increasing the annealing temperature to 250 °C, whereas the TRPL lifetime of the CdS/CIGS film had little change by annealing at temperatures lower than 200 °C. This is attributed to the recovery of physical damages by annealing, induced by sputtering of the Zn1−xMgxO film. The TRPL lifetime abruptly decreased with annealing at 300 °C. The diffusion of excess Zn from the Zn1−xMgxO film into the CIGS interface is clearly observed in secondary ion mass spectroscopy (SIMS) depth profiles. These results indicate that excess Zn at the vicinity of the CIGS surface acts as non-radiative centers at the interface. The TRPL lifetime of the Zn1−xMgxO/CIGS film annealed at 250 °C reached values to be comparable to that of the as-deposited CdS/CIGS film. Performance of the Zn1−xMgxO/CIGS cells varied with the annealing temperature in the same manner as the TRPL lifetime. The highest efficiency of the Zn1−xMgxO/CIGS solar cells was achieved for annealing at 250 °C. The results of the TRPL lifetime on annealing show that the cell efficiency is strongly influenced by the Zn1−xMgxO/CIGS interface states related to the damages and diffusion of Zn.  相似文献   
14.
In the design assessment of fast reactor plant components, prevention of crack initiation from defect-free structures is a main concern. However, existence of initial defects such as weld defects cannot be entirely excluded and this potential cracks are to be evaluated to determine if initiated cracks do not lead to component failure instantly. Therefore, evaluation of structural integrity in the presence of crack-like defects is also important to complement the formal design assessment. The authors have been developing a guideline for assessing long-term structural integrity of fast reactor components using detailed inelastic analysis and nonlinear fracture mechanics. This guideline consists of two parts, evaluation of defect-free structures and flaw evaluation. In the latter, creep-fatigue is considered to be one of the most essential driving force for crack propagation at high operating temperature exceeding 500 °C. The uses of J-integral-type parameters (fatigue J-integral range and creep J-integral) are recommended to describe creep-fatigue crack propagation behavior in the guideline. This paper gives an outline of the simplified evaluation method for creep-fatigue crack propagation.  相似文献   
15.
16.
17.
It prepared a polymer and polymer gel of a liquid crystalline (LC) semiconductor having a 2-phenylnaphthalene moiety and studied their charge carrier transport properties by the time-of-flight technique. It is found that polyacrylate having the mesogenic core moiety of 2-phenylnaphtalene (PNP-acrylate) exhibited a comparable mobility of 10-4cm2/Vs in smectic A phase to those in smectic A (SmA) phase of small molecular liquid crystals with the same core moiety, e.g., 6-(4'-octylphenyl)- 2-dodecyloxynaphthalene (8-PNP-O12), and an enhanced mobility up to 10-3cm2/Vs in the LC-glassy phase at room temperature, when mixed with a small amount of 8-PNP-O12. On the other hand, the polymer gel consisting of 20 wt %-hexamethylenediacrylate (HDA)-based cross-linked polymer and 8-PNP-O12 exhibited no degraded mobility when cross-linked at the mesophase. These results indicate that the polymer and polymer composite of liquid crystalline semiconductors provide us with an easy way to realize a quality organic semiconductor thin film for the immediate device applications.  相似文献   
18.
Improved preparation process of a device quality Cu(In,Ga)Se2 (CIGS) thin film was proposed for production of CIGS solar cells. In–Ga–Se layer were deposited on Mo-coated soda-lime glass, and then the layer was exposed to Cu and Se fluxes to form Cu–Se/In–Ga–Se precursor film at substrate temperature of over 200°C. The precursor film was annealed in Se flux at substrate temperature of over 500°C to obtain high-quality CIGS film. The solar cell with a MgF2/ITO/ZnO/CdS/CIGS/Mo/glass structure showed an efficiency of 17.5% (Voc=0.634 V, Jsc=36.4 mA/cm2, FF=0.756).  相似文献   
19.
We have developed the flexible Cu(In,Ga)Se2 (CIGS) solar cells on the stainless steel substrates with the insulating layer for the fabrication of the integrated module. The CIGS films have strong adhesion to the Mo films with insulating layers. An efficiency of 12.3% was achieved by the flexible CIGS solar cell with a structure of ITO/ZnO/CdS/CIGS/Mo/SiO2/stainless steel. The insertion of the SiO2 insulating layer did not have an influence on the formation of the CIGS film and solar cell performances.  相似文献   
20.
The effects of long-range potential fluctuations (LRPF) on the d.c. and a.c. photoconductivities of undoped hydrogenated amorphous silicon (a-Si : H) have been discussed in the temperature region 20–300 K. It is found that the a.c. photoconductivity in the entire temperature range is dominated by dielectric relaxation, and not by any electronic hopping motion. A reasonable fit of the experimental data to a model calculation based on LRPF is obtained, and the extent of the potential fluctuations is deduced to be ~0.06 eV in energy and ~10 nm on a length scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号