首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83926篇
  免费   989篇
  国内免费   407篇
电工技术   779篇
综合类   2316篇
化学工业   11426篇
金属工艺   4808篇
机械仪表   3021篇
建筑科学   2160篇
矿业工程   562篇
能源动力   1125篇
轻工业   3603篇
水利工程   1266篇
石油天然气   341篇
无线电   9261篇
一般工业技术   16337篇
冶金工业   2745篇
原子能技术   262篇
自动化技术   25310篇
  2018年   14450篇
  2017年   13378篇
  2016年   9959篇
  2015年   606篇
  2014年   225篇
  2013年   211篇
  2012年   3136篇
  2011年   9401篇
  2010年   8276篇
  2009年   5539篇
  2008年   6774篇
  2007年   7776篇
  2006年   121篇
  2005年   1218篇
  2004年   1136篇
  2003年   1175篇
  2002年   540篇
  2001年   109篇
  2000年   185篇
  1999年   69篇
  1998年   104篇
  1997年   59篇
  1996年   66篇
  1995年   29篇
  1994年   29篇
  1993年   20篇
  1992年   14篇
  1991年   31篇
  1990年   9篇
  1988年   14篇
  1987年   8篇
  1969年   25篇
  1968年   45篇
  1967年   34篇
  1966年   42篇
  1965年   44篇
  1964年   11篇
  1963年   28篇
  1962年   22篇
  1961年   18篇
  1960年   30篇
  1959年   35篇
  1958年   37篇
  1957年   36篇
  1956年   34篇
  1955年   63篇
  1954年   68篇
  1952年   6篇
  1950年   6篇
  1949年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Rapid advances in image acquisition and storage technology underline the need for real-time algorithms that are capable of solving large-scale image processing and computer-vision problems. The minimum st cut problem, which is a classical combinatorial optimization problem, is a prominent building block in many vision and imaging algorithms such as video segmentation, co-segmentation, stereo vision, multi-view reconstruction, and surface fitting to name a few. That is why finding a real-time algorithm which optimally solves this problem is of great importance. In this paper, we introduce to computer vision the Hochbaum’s pseudoflow (HPF) algorithm, which optimally solves the minimum st cut problem. We compare the performance of HPF, in terms of execution times and memory utilization, with three leading published algorithms: (1) Goldberg’s and Tarjan’s Push-Relabel; (2) Boykov’s and Kolmogorov’s augmenting paths; and (3) Goldberg’s partial augment-relabel. While the common practice in computer-vision is to use either BK or PRF algorithms for solving the problem, our results demonstrate that, in general, HPF algorithm is more efficient and utilizes less memory than these three algorithms. This strongly suggests that HPF is a great option for many real-time computer-vision problems that require solving the minimum st cut problem.  相似文献   
992.
Gradient vector flow (GVF) is a feature-preserving spatial diffusion of image gradients. It was introduced to overcome the limited capture range in traditional active contour segmentation. However, the original iterative solver for GVF, using Euler’s method, converges very slowly. Thus, many iterations are needed to achieve the desired capture range. Several groups have investigated the use of graphic processing units (GPUs) to accelerate the GVF computation. Still, this does not reduce the number of iterations needed. Multigrid methods, on the other hand, have been shown to provide a much better capture range using considerable less iterations. However, non-GPU implementations of the multigrid method are not as fast as the Euler method when executed on the GPU. In this paper, a novel GPU implementation of a multigrid solver for GVF written in OpenCL is presented. The results show that this implementation converges and provides a better capture range about 2–5 times faster than the conventional iterative GVF solver on the GPU.  相似文献   
993.
Multiview video coding (MVC) exploits mode decision, motion estimation and disparity estimation to achieve high compression ratio, which results in an extensive computational complexity. This paper presents an efficient mode decision approach for MVC using a macroblock (MB) position constraint model (MPCM). The proposed approach reduces the number of candidate modes by utilizing the mode correlation and rate distortion cost (RD cost) in the previously encoded frames/views. Specifically, the mode correlations both in the temporal-spatial domain and the inter-view are modeled with MPCM. Then, MPCM is exploited to select the optimal prediction direction for the current encoding MB. Finally, the inter mode is early determined in the optimal prediction direction. Experimental results show that the proposed method can save 86.03 % of encoding time compared with the exhaustive mode decision used in the reference software of joint multiview video coding, with only 0.077 dB loss in Bjontegaard delta peak signal-to-noise ratio (BDPSNR) and 2.29 % increment of the total Bjontegaard delta bit rate (BDBR), which is superior to the performances of state-of-the-art approaches.  相似文献   
994.
995.
We present a preliminary study of buffer overflow vulnerabilities in CUDA software running on GPUs. We show how an attacker can overrun a buffer to corrupt sensitive data or steer the execution flow by overwriting function pointers, e.g., manipulating the virtual table of a C++ object. In view of a potential mass market diffusion of GPU accelerated software this may be a major concern.  相似文献   
996.
Statistical detection of mass malware has been shown to be highly successful. However, this type of malware is less interesting to cyber security officers of larger organizations, who are more concerned with detecting malware indicative of a targeted attack. Here we investigate the potential of statistically based approaches to detect such malware using a malware family associated with a large number of targeted network intrusions. Our approach is complementary to the bulk of statistical based malware classifiers, which are typically based on measures of overall similarity between executable files. One problem with this approach is that a malicious executable that shares some, but limited, functionality with known malware is likely to be misclassified as benign. Here a new approach to malware classification is introduced that classifies programs based on their similarity with known malware subroutines. It is illustrated that malware and benign programs can share a substantial amount of code, implying that classification should be based on malicious subroutines that occur infrequently, or not at all in benign programs. Various approaches to accomplishing this task are investigated, and a particularly simple approach appears the most effective. This approach simply computes the fraction of subroutines of a program that are similar to malware subroutines whose likes have not been found in a larger benign set. If this fraction exceeds around 1.5 %, the corresponding program can be classified as malicious at a 1 in 1000 false alarm rate. It is further shown that combining a local and overall similarity based approach can lead to considerably better prediction due to the relatively low correlation of their predictions.  相似文献   
997.
The wide availability of affordable RGB-D sensors changes the landscape of indoor scene analysis. Years of research on simultaneous localization and mapping (SLAM) have made it possible to merge multiple RGB-D images into a single point cloud and provide a 3D model for a complete indoor scene. However, these reconstructed models only have geometry information, not including semantic knowledge. The advancements in robot autonomy and capabilities for carrying out more complex tasks in unstructured environments can be greatly enhanced by endowing environment models with semantic knowledge. Towards this goal, we propose a novel approach to generate 3D semantic maps for an indoor scene. Our approach creates a 3D reconstructed map from a RGB-D image sequence firstly, then we jointly infer the semantic object category and structural class for each point of the global map. 12 object categories (e.g. walls, tables, chairs) and 4 structural classes (ground, structure, furniture and props) are labeled in the global map. In this way, we can totally understand both the object and structure information. In order to get semantic information, we compute semantic segmentation for each RGB-D image and merge the labeling results by a Dense Conditional Random Field. Different from previous techniques, we use temporal information and higher-order cliques to enforce the label consistency for each image labeling result. Our experiments demonstrate that temporal information and higher-order cliques are significant for the semantic mapping procedure and can improve the precision of the semantic mapping results.  相似文献   
998.
Range of applications for Wireless Sensor Networks (WSNs) is increasing rapidly. One class of such applications is Energy-Aware Wireless Positioning Systems for situation awareness. Localization deals with determining a target node’s position in WSN by analyzing signals exchanged between nodes. Received Signal Strength Indicator (RSSI) represents the ratio between received signal power and a reference power, and is typically used to estimate distances between nodes. RSSI distance estimations are affected by many factors. This paper aims to enhance the accuracy of RSSI-based localization techniques in ZigBee Networks through studying the communication channel status between two nodes. As the network nodes are exposed to high noise levels, position estimation accuracy deteriorates. A novel adaptive localization scheme is proposed; Two-State Markov model with moving average is employed to detect unpredictable RSSI readings that may reflect badly on the estimation. The proposed scheme achieves better estimation accuracy, for example, the estimation error was reduced from 11.7 m to just 3 m using the proposed scheme.  相似文献   
999.
The mobile health (mHealth) and electronic health (eHealth) systems are useful to maintain a correct administration of health information and services. However, it is mandatory to ensure a secure data transmission and in case of a node failure, the system should not fall down. This fact is important because several vital systems could depend on this infrastructure. On the other hand, a cloud does not have infinite computational and storage resources in its infrastructure or would not provide all type of services. For this reason, it is important to establish an interrelation between clouds using communication protocols in order to provide scalability, efficiency, higher service availability and flexibility which allow the use of services, computing and storage resources of other clouds. In this paper, we propose the architecture and its secure protocol that allows exchanging information, data, services, computing and storage resources between all interconnected mHealth clouds. The system is based on a hierarchic architecture of two layers composed by nodes with different roles. The routing algorithm used to establish the connectivity between the nodes is the shortest path first (SPF), but it can be easily changed by any other one. Our architecture is highly scalable and allows adding new nodes and mHealth clouds easily, while it tries to maintain the load of the cloud balanced. Our protocol design includes node discovery, authentication and fault tolerance. We show the protocol operation and the secure system design. Finally we provide the performance results in a controlled test bench.  相似文献   
1000.
A Peer-to-Peer (P2P) network can boost its performance if peers are provided with underlying network-layer routing topology. The task of inferring the network-layer routing topology and link performance from an end host to a set of other hosts is termed as network tomography, and it normally requires host computers to send probing messages. We design a passive network tomography method that does not require any probing messages and takes a free ride over data flows in P2P networks. It infers routing topology based on end-to-end delay correlation estimation (DCE) without requiring any synchronization or cooperation from the intermediate routers. We implement and test our method in the real world Internet environment and achieved the accuracy of 92 % in topology recovery. We also perform extensive simulation in OMNeT++ to evaluate its performance over large scale networks, showing that its topology recovery accuracy is about 95 % for large networks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号