首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   2篇
电工技术   3篇
化学工业   80篇
金属工艺   1篇
机械仪表   1篇
建筑科学   10篇
能源动力   3篇
轻工业   23篇
无线电   10篇
一般工业技术   12篇
原子能技术   4篇
自动化技术   9篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2015年   1篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2007年   6篇
  2006年   6篇
  2005年   10篇
  2004年   7篇
  2003年   8篇
  2002年   10篇
  2001年   7篇
  2000年   8篇
  1999年   5篇
  1998年   4篇
  1997年   8篇
  1996年   7篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1989年   5篇
  1987年   2篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1968年   1篇
排序方式: 共有156条查询结果,搜索用时 15 毫秒
71.
72.
73.
Persistent (lifetime > 100 ms) room-temperature phosphorescence (pRTP) is important for state-of-the-art security and bioimaging applications. An unclear relationship between chromophores and physical parameters relating to pRTP has prevented obtaining an RTP yield of over 50% and a lifetime over 1 s. Here highly efficient pRTP is reported under ambient conditions from heavy atom-free chromophores. A heavy atom-free aromatic core substituted with a long-conjugated amino group considerably accelerates the phosphorescence rate independent of the intramolecular vibration-based nonradiative rate from the lowest excited triplet state. One of the designed heavy atom-free dopant chromophores presents an RTP yield of 50% with a lifetime of 1 s under ambient conditions. The afterglow brightness under strong excitation is at least 104 times stronger than that of conventional long-persistent luminescence emitters. Here it is shown that highly efficient pRTP materials allow for high-resolution gated emission with a size of the diffraction limit using small-scale and low-cost photodetectors.  相似文献   
74.
The joining of hot-pressed silicon nitride ceramics, containing Al2O3 and Y2O3 as sintering aids, has been carried out in a nitrogen atmosphere. Uniaxial pressure was applied at high temperature during the joining process. Polyethylene was used as a joining agent. Joining strength was measured by four-point bending tests. The effects of joining conditions such as temperature (from 1400 to 1600°C), joining pressure (from 0.1 to 40 MPa), holding time (from 0.5 to 8 h) and surface roughness (R max) of the joining couple (about 0.12, 0.22 and 1.2m) on the joining strength were examined. The joining strength was increased with increases in joining temperature, joining pressure and holding time. Larger surface roughness caused lower joining strength. The higher joining strength was attributed to a larger true contact area. The area was increased through plastic deformation of the joined couple at elevated temperatures. The highest joining strength attained was 567 MPa at room temperature, which was about half the value of the average flexural strength of the original body. The high temperature strength measured at 1200° C did not differ very much from the room-temperature value.  相似文献   
75.
Processing of a Novel Multilayered Silicon Nitride   总被引:1,自引:0,他引:1  
A new type of silicon nitride with a layered structure of alternating dense and porous layers was obtained by addition of β-Si3N4 whiskers to the porous layers. The materials consisted of dense layers 60 μm thick and porous layers 40 μm thick with a final porosity of about 30%. Highly anisotropic shrinkage behavior was observed during sintering. A large addition of whiskers to the porous layers resulted in layers with well-oriented and tightly tangled elongated grains, where porosity is represented by anisotropic shaped pores.  相似文献   
76.
In this study boron nitride-containing composites (BNCC) with high strength, low Young's modulus and highly improved strain tolerance have been developed by reaction synthesis technology. The in situ formed BN particles with fine (nanosized) particle size were distributed homogeneously and isotropically in the matrixes, which decreased the negative effect of the BN phase on the composite properties. In order to be relevant to the wide applications in the steel industry such as break rings for horizontal casting of steel, the BNCC (i.e., AlON–BN composites) were evaluated in terms of the corrosion resistance to molten steel, wear and thermal shock resistance. The results demonstrate that the AlON–BN composites outperform those of the currently employed materials especially with respect to corrosion resistance.  相似文献   
77.
Synthesis and Properties of Porous Single-Phase β'-SiAlON Ceramics   总被引:1,自引:0,他引:1  
Single-phase β'-SiAlON (Si6− z Al z O z N8− z , z = 0–4.2) ceramics with porous structure have been prepared by pressureless sintering of powder mixtures of á-Si3N4, AlN, and Al2O3 of the SiAlON compositions. A solution of AlN and Al2O3 into Si3N4 resulted in the β'-SiAlON, and full densification was prohibited because no other sintering additives were used. Relative densities ranging from 50%–90% were adjusted with the z -value and sintering temperature. The results of X-ray diffraction, scanning electron microscopy, and transmission electron microscopy analyses indicated that single-phase β'-SiAlON free from a grain boundary glassy phase could be obtained. Both grain and pore sizes increased with increasing z -value. Low z -value resulted in a relatively high flexural strength.  相似文献   
78.
Strain Tolerant Porous Silicon Nitride   总被引:4,自引:0,他引:4  
An approach to material strain tolerance, which basically makes it possible to lower the elastic modulus while retaining strength, was experimentally confirmed using as an example a porous silicon nitride composed of oriented anisotropic grains and pores. The porous structure consisting of tightly tangled rodlike grains and anisotropic pores was obtained by using β-Si3N4 whiskers. This material exhibited a low Youngs modulus while retaining a relatively high fracture stress, even though it contained 14.4% porosity. Consequently, the strain to failure of silicon nitride was appreciably increased.  相似文献   
79.
Reaction Synthesis of Magnesium Silicon Nitride Powder   总被引:2,自引:0,他引:2  
The synthesis of magnesium silicon nitride (MgSiN2) by direct nitridation of a Si/Mg2Si/Mg/Si3N4 powder mixture is described. A nucleation period at 550°C and stepwise heat-treatment schedule up to 1350°C was adopted for the synthesis of MgSiN2 powder, based on TG-DTA measurements. The influence of the ratio of constituents on the final phase composition also has been studied. The content of magnesium and silicon in the starting powder should fulfill the conditions Mg2Si/Mg ≥ 3 and Si3N4/Sitot≥ 0.5 to obtain single-phase MgSiN2. The silicon particle size of <0.5 μm is preferable to decrease the time of nitridation. The oxygen content of as-synthesized powders is in the range 0.9–1.2 wt%. However, the oxygen content of MgSiN2 powder decreases further by the addition of 2 wt% CaF2 or 0.75 wt% carbon and reaching the lowest value of 0.45 wt% oxygen after carbothermal reduction in an alumina-tube furnace.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号