首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   17篇
电工技术   2篇
化学工业   58篇
金属工艺   2篇
机械仪表   12篇
建筑科学   15篇
矿业工程   2篇
能源动力   23篇
轻工业   5篇
水利工程   2篇
石油天然气   2篇
无线电   11篇
一般工业技术   25篇
冶金工业   4篇
原子能技术   3篇
自动化技术   37篇
  2023年   3篇
  2022年   3篇
  2021年   3篇
  2020年   5篇
  2019年   11篇
  2018年   12篇
  2017年   12篇
  2016年   9篇
  2015年   5篇
  2014年   15篇
  2013年   26篇
  2012年   27篇
  2011年   19篇
  2010年   17篇
  2009年   10篇
  2008年   5篇
  2007年   7篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  1999年   1篇
  1982年   1篇
  1975年   2篇
排序方式: 共有203条查询结果,搜索用时 0 毫秒
201.

Machine learning (ML) models have proved efficient in classifying data samples into their respective categories. The standard ML evaluation methodology assumes that test data samples are derived from pre-observed classes used in the training phase. However, in applications such as Network Intrusion Detection Systems (NIDSs), obtaining data samples of all attack classes to be observed is challenging. ML-based NIDSs face new attack traffic known as zero-day attacks that are not used in training due to their non-existence at the time. Therefore, this paper proposes a novel zero-shot learning methodology to evaluate the performance of ML-based NIDSs in recognising zero-day attack scenarios. In the attribute learning stage, the learning models map network data features to semantic attributes that distinguish between known attacks and benign behaviour. In the inference stage, the models construct the relationships between known and zero-day attacks to detect them as malicious. A new evaluation metric is defined as Zero-day Detection Rate (Z-DR) to measure the effectiveness of the learning model in detecting unknown attacks. The proposed framework is evaluated using two key ML models and two modern NIDS data sets. The results demonstrate that for certain zero-day attack groups discovered in this paper, ML-based NIDSs are ineffective in detecting them as malicious. Further analysis shows that attacks with a low Z-DR have a significantly distinct feature distribution and a higher Wasserstein Distance range than the other attack classes.

  相似文献   
202.
Mine Water and the Environment - Although many approaches have been proposed for flood risk assessment in urban areas, an equivalent methodology for remote mine sites with poor hydrological data...  相似文献   
203.
In materials chemistry, green chemistry has established firm ground providing essential design criteria to develop advanced tools for efficient functionalization and modification of materials. Particularly, the combination of multicomponent reactions in water and aqueous media with materials chemistry unlocks a new sustainable way for constructing multi-functionalized structures with unique features, playing significant roles in the plethora of applications. Multicomponent reactions have received significant consideration from the community of material chemistry because of their great efficiency, simple operations, intrinsic molecular diversity, and an atom and a pot economy. Also, by rational design of multicomponent reactions in water and aqueous media, the performance of some multicomponent reactions could be enhanced by the contributing “natural” form of water-soluble materials, the exclusive solvating features of water, and simple separating and recovering materials. To date, there is no exclusive review to report the sustainable functionalization and modification of materials in water. This critical review highlights the utility of various kinds of multicomponent reactions in water and aqueous media as green methods for functionalization and modification of siliceous, magnetic, and carbonaceous materials, oligosaccharides, polysaccharides, peptides, proteins, and synthetic polymers. The detailed discussion of synthetic procedures, properties, and related applicability of each functionalized/modified material is fully deliberated in this review.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号