全文获取类型
收费全文 | 375篇 |
免费 | 30篇 |
国内免费 | 11篇 |
专业分类
电工技术 | 10篇 |
综合类 | 2篇 |
化学工业 | 87篇 |
金属工艺 | 9篇 |
机械仪表 | 25篇 |
建筑科学 | 26篇 |
矿业工程 | 1篇 |
能源动力 | 22篇 |
轻工业 | 32篇 |
水利工程 | 5篇 |
石油天然气 | 3篇 |
武器工业 | 2篇 |
无线电 | 42篇 |
一般工业技术 | 83篇 |
冶金工业 | 13篇 |
原子能技术 | 2篇 |
自动化技术 | 52篇 |
出版年
2024年 | 4篇 |
2023年 | 12篇 |
2022年 | 17篇 |
2021年 | 31篇 |
2020年 | 12篇 |
2019年 | 25篇 |
2018年 | 22篇 |
2017年 | 12篇 |
2016年 | 23篇 |
2015年 | 14篇 |
2014年 | 20篇 |
2013年 | 38篇 |
2012年 | 28篇 |
2011年 | 21篇 |
2010年 | 23篇 |
2009年 | 18篇 |
2008年 | 19篇 |
2007年 | 20篇 |
2006年 | 15篇 |
2005年 | 8篇 |
2004年 | 4篇 |
2003年 | 3篇 |
2002年 | 7篇 |
2001年 | 3篇 |
2000年 | 5篇 |
1999年 | 2篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1995年 | 2篇 |
1993年 | 2篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1986年 | 1篇 |
1975年 | 1篇 |
排序方式: 共有416条查询结果,搜索用时 15 毫秒
21.
X-ray fluorescence (XRF) is a commonly used analytical method to quantify lead (Pb), a toxic element, in atmospheric aerosol. The commercially available reference materials used for calibrating XRF do not mimic the concentrations and filter materials of particulate matter (PM) monitoring networks. In this study, we described an aerosol deposition method to generate Pb reference materials (RMs) over a range of concentrations to serve several purposes for the US Environmental Protection Agency (EPA) and Interagency Monitoring of PROtected Visual Environments (IMPROVE) monitoring networks including laboratory auditing, federal equivalency method evaluation, and calibration and quality control of XRF instruments. The RMs were generated using a laboratory-built aerosol chamber equipped with a federal reference sampler at concentration levels ranging from 0.0125 to 0.70 μg/m3. XRF analysis at UC Davis was demonstrated to be equivalent to a US and EU reference method, inductively coupled plasma—mass spectrometry (ICP-MS), for measuring Pb on RMs following a methodology described in the United States and international standards. The Pb concentrations on subsets of the RMs were verified by three other XRF laboratories with different analyzers and/or quantification methods and were shown to be equivalent to the UC Davis XRF analysis. The generated RMs were demonstrated to have short and long-term stability, satisfying an additional requirement of reference materials.
Copyright © 2016 American Association for Aerosol Research 相似文献
22.
The effect of crystallinity and particle morphology of the submicron barium hexaferrite (BaFe12O19) powders on the magnetic properties was investigated on powders synthesized by solid-state calcination (BHF-c) and molten salt synthesis (BHF-m) methods. Solid-state calcination route was found to yield agglomerated powders with poor crystallinity, whereas molten salt synthesis resulted in well crystallized powders with an anisometric morphology. The saturation magnetization of the BHF-m and BHF-c samples is 59 emu/g, and 56 emu/g at 300 K, and 90 emu/g, and 86 emu/g at 10 K. The temperature dependence of magnetization of the BHF-m is higher and the increase in magnetocrystal anisotropy with decreasing temperature is also steeper than that of the BHF-c due to the higher crystallinity. The magnetocrystalline anisotropy constant, K, calculated from the Stoner–Wohlfarth theory, of the BHF-m and BHF-c powders is 14.24 and 10.14 HA2/kg, respectively. The higher effective anisotropy, Keff of the BHF-m is also confirmed through ferromagnetic resonance measurements. In conclusion, the higher crystallinity, slightly higher particle size and anisometric morphology of the BHF-m particles translated into higher magnetic properties and magnetocrystalline anisotropy. 相似文献
23.
Interfacial adhesion is a major concern with respect to successful performance of thin polymer films in developing new thin-film processes. Micro-indentation was used to induce interfacial delamination of polytetrafluoroethylene (PTFE) films deposited on glass substrates using hot filament chemical vapour deposition (HFCVD). Film thickness (1, 2, 3, 5, 10 µm) and indentation load (0.5, 0.75, 1, 2, 3 N) effects on the delamination diameter were investigated. A three-dimensional finite element model using shear material failure criterion and cohesive zone model (CZM) was developed to simulate the delamination. A normalized load–delamination radius relationship was obtained to evaluate the interfacial fracture toughness. The experimental observations showed that the delamination diameter depends on film thickness and indentation load. The numerical simulation indicates the delamination diameter depends on film thickness, material properties, and indentation force. The predictions of interfacial fracture toughness for 5- and 10-µm PTFE films are much smaller than those values using Rosenfeld et al.’s equation, which excludes the energy spent during the penetration. 相似文献
24.
Frictional and durability characteristics of 1-µm-thick polytetrafluoroethylene (PTFE) films deposited by hot filament chemical vapor deposition on aluminum substrates were investigated. A universal microtribotester was used to examine the frictional and durability properties using the ball-on-plate and ball-on-disk configurations, respectively. Effects of normal force (2.5, 5, 10, 15 N), sliding speed (0.1, 1, 5 mm/s), and surface roughness of the aluminum substrate (Ra = 0.01, 0.57, 1.28, 2.34 µm) on the coefficient of friction (COF) and the effects of normal force (2.5, 5 N), sliding speed (0.42, 4.19 mm/s), and surface roughness on the durability were investigated. It was shown that the COF of the PTFE-coated interface increases with increasing surface roughness or sliding speed. The COF depends on the normal force to a lesser extent than the other two parameters. The medium-level, O(0.5 µm), roughness of the substrate provides the longest durability, whereas the smoothest or very rough surface provides shorter durability. Analysis of variance (ANOVA) indicates that the surface roughness has the most significant effect on the COF and durability. In the case of a smooth interface, a relationship between COF, sliding speed, and normal force can be predicted. Results indicate an optimal surface roughness for improving durability. 相似文献
25.
Poly‐electrolyte N‐vinyl 2‐pyrrolidone‐g‐tartaric acid (PVP‐g‐TA) hydrogels with varying compositions were prepared in the form of rods from ternary mixtures of N‐vinyl 2‐pyrrolidone/tartaric acid/water. The effect of external stimuli, such as the solution pH, ionic strength, and temperature, on uranyl adsorption by these hydrogels was investigated. Uranyl adsorption capacities of the hydrogels were determined to be 53.2–72.2 (mg UO/g dry gel) at pH 1.8, and 35.3–60.7 (mg UO/g dry gel) at pH 3.8, depending on the amount of TA in the hydrogel. The adsorption studies have shown that the temperature and the ionic strength of the swelling solution also influence uranyl ion adsorption by PVP‐g‐TA hydrogels. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2219–2226, 2000 相似文献
26.
27.
Polymeric nanocomposites were synthesized from functionalized soybean‐oil‐based polymer matrix and montmorillonite (MMT) clay using an in situ free radical polymerization reaction. Acrylated epoxidized soybean oil combined with styrene was used as the monomer. Organophilic MMT (OrgMMT) was obtained using a quaternized derivative of methyl oleate, which was synthesized from olive oil triglyceride, as a renewable intercalant. The resultant nanocomposites were characterized using X‐ray diffraction and atomic force microscopy. The effect of increased nanofiller loading on the thermal and mechanical properties of the nanocomposites was investigated using thermogravimetric analysis and dynamic mechanical analysis. It was found that the desired exfoliated nanocomposite structure was achieved when the OrgMMT loading was 1 and 2 wt%, whereas a partially exfoliated or intercalated nanocomposite was obtained for 3 wt% loading. All the nanocomposites were found to have improved thermal and mechanical properties as compared with virgin acrylated epoxidized soybean‐oil‐based polymer matrix. The nanocomposite containing 2 wt% OrgMMT clay was found to have the highest thermal stability and best dynamic mechanical performance. Copyright © 2010 Society of Chemical Industry 相似文献
28.
Cemile 《中国化学工程学报》2021,37(9):121-127
In this study,a sequential process (heterotrophic up-flow column and completely mixed membrane bioreactors) was proposed combining advantages of the both processes.The system was operated for 249 days with simulated and real groundwater for nitrate removal at concentrations varying from 25 to 145 mg·L-1 NO3-N.The contribution of heterotrophic process to total nitrate removal in the system was controlled by dozing the ethanol considering the nitrate concentration.By this way,sulfur based autotrophic denitrification rate was decreased and the effluent sulfate concentrations were controlled.The alkalinity requirement in the autotrophic process was produced in the heterotrophic reactor,and the system was operated without alkalinity supplementation.Throughout the study,the chemical oxygen demand in the heterotrophic reactor effluent was (23.7 ± 22) mg·L-1 and it was further decreased to(7.5 ± 7.2) mg·L-1 in the system effluent,corresponding to a 70% reduction.In the last period of the study,the real groundwater containing 145 mg·L-1 NO3-N was completely removed.Membrane was operated without chemical washing in the first 114 days.Between days 115-249 weekly chemical washing was required. 相似文献
29.
Iris Ribitsch Andrea Bileck Alexander D. Aldoshin Maciej M. Kadua Rupert L. Mayer Monika Egerbacher Simone Gabner Ulrike Auer Sinan Gültekin Johann Huber David P. Kreil Christopher Gerner Florien Jenner 《International journal of molecular sciences》2021,22(11)
Tendinopathies are painful, disabling conditions that afflict 25% of the adult human population. Filling an unmet need for realistic large-animal models, we here present an ovine model of tendon injury for the comparative study of adult scarring repair and fetal regeneration. Complete regeneration of the fetal tendon within 28 days is demonstrated, while adult tendon defects remained macroscopically and histologically evident five months post-injury. In addition to a comprehensive histological assessment, proteome analyses of secretomes were performed. Confirming histological data, a specific and pronounced inflammation accompanied by activation of neutrophils in adult tendon defects was observed, corroborated by the significant up-regulation of pro-inflammatory factors, neutrophil attracting chemokines, the release of potentially tissue-damaging antimicrobial and extracellular matrix-degrading enzymes, and a response to oxidative stress. In contrast, secreted proteins of injured fetal tendons included proteins initiating the resolution of inflammation or promoting functional extracellular matrix production. These results demonstrate the power and relevance of our novel ovine fetal tendon regeneration model, which thus promises to accelerate research in the field. First insights from the model already support our molecular understanding of successful fetal tendon healing processes and may guide improved therapeutic strategies. 相似文献
30.
金属有机框架(MOFs)材料因其大的比表面积、可调控的孔道结构和丰富的活性位点引起了国内外学者们的广泛关注。近年来MOFs基材料广泛应用于能量储存与转化领域,但大多数MOFs基材料的低稳定性和低导电性等缺陷限制了其实际应用。通过对MOFs基材料进行改性,如采用共轭度高的有机配体以增加MOFs材料的稳定性,或MOFs衍生物以提高其氧化还原活性位点和导电性,从而达到提高MOFs基电极材料的电化学性能。主要介绍了原始MOFs及其衍生材料如碳材料、金属氧化物、金属硫化物、金属氢氧化物和金属磷化物等在超级电容器电极材料中的最新研究进展。研究表明,多金属MOFs材料或多金属MOFs衍生物有利于提高电极材料的电化学性能,而导电MOFs材料或MOFs衍生物中的碳材料有利于提高电极材料的导电性。最后对MOFs基电极材料在电化学储能领域中的研究做出了展望,指出MOFs基材料的形貌、组分和导电性是未来研究的发展方向。 相似文献