首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   370篇
  免费   31篇
  国内免费   11篇
电工技术   10篇
综合类   1篇
化学工业   85篇
金属工艺   9篇
机械仪表   25篇
建筑科学   26篇
矿业工程   1篇
能源动力   22篇
轻工业   32篇
水利工程   5篇
石油天然气   2篇
武器工业   2篇
无线电   42篇
一般工业技术   83篇
冶金工业   13篇
原子能技术   2篇
自动化技术   52篇
  2024年   4篇
  2023年   12篇
  2022年   14篇
  2021年   31篇
  2020年   12篇
  2019年   24篇
  2018年   22篇
  2017年   12篇
  2016年   23篇
  2015年   14篇
  2014年   20篇
  2013年   38篇
  2012年   28篇
  2011年   21篇
  2010年   23篇
  2009年   18篇
  2008年   19篇
  2007年   20篇
  2006年   15篇
  2005年   8篇
  2004年   4篇
  2003年   3篇
  2002年   7篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1993年   2篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1975年   1篇
排序方式: 共有412条查询结果,搜索用时 343 毫秒
61.
The aim of this work is to synthesize the original, new polymeric nanoparticles for concanavalin A (Con A) purification. Nanoparticles were synthesized by surfactant free emulsion polymerization. In the polymerization prosedure, 1-O-(2′-hydroxy-3′-acryloyloxypropyl)-2,3:5,6-di-O-isopropylidene-α-D-mannofuranose (Man-OPA) was used as co-monomer and 2-hydroxyethylmethacrylate (HEMA) was used as a monomer. Man-OPA was characterized by Fourier Transform Infrared Spectroscopy (FTIR), nuclear magnetic resonance and elemental analysis techniques. Poly(HEMA-Man-OPA) nanoparticles were characterized by scanning electron microscopy, FTIR and Zeta Sizer. In adsorption?desorption experiments, maximum Con A adsorption capacity of poly(HEMA-Man-OPA) nanoparticles was found 630.6 mg/g nanoparticle (pH 7.5, 1.0 mg/mL). Adsorption?desorption experiments were repeated in four times. According to results, these nanoparticles could be used several times without significant decrease in Con A adsorption capacity.  相似文献   
62.
Most attempts to emulate the mechanical properties of strong and tough natural composites using helicoidal films of wood‐derived cellulose nanocrystals (w‐CNCs) fall short in mechanical performance due to the limited shear transfer ability between the w‐CNCs. This shortcoming is ascribed to the small w‐CNC‐w‐CNC overlap lengths that lower the shear transfer efficiency. Herein, we present a simple strategy to fabricate superior helicoidal CNC films with mechanical properties that rival those of the best natural materials and are some of the best reported for photonic CNC materials thus far. Assembling the short w‐CNCs with a minority fraction of high aspect ratio CNCs derived from tunicates (t‐CNCs), we report remarkable simultaneous enhancement of all in‐plane mechanical properties and out‐of‐plane flexibility. The important role of t‐CNCs is revealed by coarse grained molecular dynamics simulations where the property enhancement are due to increased interaction lengths and the activation of additional toughening mechanisms. At t‐CNC contents greater than 5% by mass the mixed films also display UV reflecting behaviour. These damage tolerant optically active materials hold great promise for application as protective coatings. More broadly, we expect the strategy of using length‐bidispersity to be adaptable to mechanically enhancing other matrix‐free nanoparticle ensembles.  相似文献   
63.
Interfacial adhesion is a major concern with respect to successful performance of thin polymer films in developing new thin-film processes. Micro-indentation was used to induce interfacial delamination of polytetrafluoroethylene (PTFE) films deposited on glass substrates using hot filament chemical vapour deposition (HFCVD). Film thickness (1, 2, 3, 5, 10 µm) and indentation load (0.5, 0.75, 1, 2, 3 N) effects on the delamination diameter were investigated. A three-dimensional finite element model using shear material failure criterion and cohesive zone model (CZM) was developed to simulate the delamination. A normalized load–delamination radius relationship was obtained to evaluate the interfacial fracture toughness. The experimental observations showed that the delamination diameter depends on film thickness and indentation load. The numerical simulation indicates the delamination diameter depends on film thickness, material properties, and indentation force. The predictions of interfacial fracture toughness for 5- and 10-µm PTFE films are much smaller than those values using Rosenfeld et al.’s equation, which excludes the energy spent during the penetration.  相似文献   
64.
Atmospheric particulate matter (PM) fractions (PM(10) and PM(2.5)) were sampled concurrently between June 2004 and May 2005 at two sites (urban and suburban) in Izmir, Turkey. The elemental composition of PM (Al, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, V, and Zn) was determined using inductively coupled plasma-optical emission spectrometer. Elemental compositions of several PM sources were also characterized. Positive matrix factorization (PMF) and chemical mass balance modeling (CMB) were applied to determine the PM sources and their contributions to air concentrations. The major contributors to PM were fossil fuel burning, traffic emissions, mineral industries and marine salt according to the PMF results. However, undetermined parts were more than 40%. On the other hand, the contributions to PM could be determined completely by CMB, and the dominant contributor was traffic with >70% at the two sites. Fossil fuel burning, mineral industries, marine salt and natural gas-fired power plant were the minor contributors.  相似文献   
65.
In biology, structural design and materials engineering is unified through formation of hierarchical features with atomic resolution, from nano to macro. Three molecular building blocks are particularly prevalent in all structural protein materials: alpha helices (AHs), beta-sheets (BSs) and tropocollagen (TC). In this article we present a comparative study of these three key building blocks by focusing on their mechanical signatures, based on results from full-atomistic simulation studies. We find that each of the basic structures is associated with a characteristic material behavior: AH protein domains provide resilience at large deformation through energy dissipation at low force levels, BS protein domains provide great strength under shear loading, and tropocollagen molecules provide large elasticity for deformation recovery. This suggests that AHs, BSs, and TC molecules have mutually exclusive mechanical signatures. We correlate each of these basic properties with the molecule’s structure and the associated fundamental rupture mechanisms. Our study may enable the use of abundant protein building blocks in nanoengineered materials, and may provide critical insight into basic biological mechanisms for bio-inspired nanotechnologies. The transfer towards the design of novel nanostructures could lead to new multifunctional and mechanically active, tunable, and changeable materials.  相似文献   
66.
Frictional and durability characteristics of 1-µm-thick polytetrafluoroethylene (PTFE) films deposited by hot filament chemical vapor deposition on aluminum substrates were investigated. A universal microtribotester was used to examine the frictional and durability properties using the ball-on-plate and ball-on-disk configurations, respectively. Effects of normal force (2.5, 5, 10, 15 N), sliding speed (0.1, 1, 5 mm/s), and surface roughness of the aluminum substrate (Ra = 0.01, 0.57, 1.28, 2.34 µm) on the coefficient of friction (COF) and the effects of normal force (2.5, 5 N), sliding speed (0.42, 4.19 mm/s), and surface roughness on the durability were investigated. It was shown that the COF of the PTFE-coated interface increases with increasing surface roughness or sliding speed. The COF depends on the normal force to a lesser extent than the other two parameters. The medium-level, O(0.5 µm), roughness of the substrate provides the longest durability, whereas the smoothest or very rough surface provides shorter durability. Analysis of variance (ANOVA) indicates that the surface roughness has the most significant effect on the COF and durability. In the case of a smooth interface, a relationship between COF, sliding speed, and normal force can be predicted. Results indicate an optimal surface roughness for improving durability.  相似文献   
67.
曲面平头刀加工无干涉刀位轨迹自动生成的算法研究   总被引:7,自引:1,他引:6  
提出了一种新的曲面平头立铣刀加工无干涉刀位轨迹自动生成的算法。该方法将曲面分成凸区域及非凸区域,将对凸区域采用快速算法,而非凸区域则进行干涉检查和处理。论述了三轴及五轴加工时局部刀具过切干涉和全局刀具干涉的检查和处理。  相似文献   
68.
Poly‐electrolyte N‐vinyl 2‐pyrrolidone‐g‐tartaric acid (PVP‐g‐TA) hydrogels with varying compositions were prepared in the form of rods from ternary mixtures of N‐vinyl 2‐pyrrolidone/tartaric acid/water. The effect of external stimuli, such as the solution pH, ionic strength, and temperature, on uranyl adsorption by these hydrogels was investigated. Uranyl adsorption capacities of the hydrogels were determined to be 53.2–72.2 (mg UO/g dry gel) at pH 1.8, and 35.3–60.7 (mg UO/g dry gel) at pH 3.8, depending on the amount of TA in the hydrogel. The adsorption studies have shown that the temperature and the ionic strength of the swelling solution also influence uranyl ion adsorption by PVP‐g‐TA hydrogels. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2219–2226, 2000  相似文献   
69.
Insulin resistance (IR) is a condition which refers to individuals whose cells and tissues become insensitive to the peptide hormone, insulin. Over the recent years, a wealth of data has made it clear that a synergistic relationship exists between IR, type 2 diabetes mellitus, and cancer. Although the underlying mechanism(s) for this association remain unclear, it is well established that hyperinsulinemia, a hallmark of IR, may play a role in tumorigenesis. On the other hand, IR is strongly associated with visceral adiposity dysfunction and systemic inflammation, two conditions which favor the establishment of a pro-tumorigenic environment. Similarly, epigenetic modifications, such as DNA methylation, histone modifications, and non-coding RNA, in IR states, have been often associated with tumorigenesis in numerous types of human cancer. In addition to these observations, it is also broadly accepted that gut microbiota may play an intriguing role in the development of IR-related diseases, including type 2 diabetes and cancer, whereas potential chemopreventive properties have been attributed to some of the most commonly used antidiabetic medications. Herein we provide a concise overview of the most recent literature in this field and discuss how different but interrelated molecular pathways may impact on tumor development.  相似文献   
70.
In this study, the case properties and diffusion kinetics of AISI 440C and AISI 52100 steels borided in Ekabor-II powder were investigated by conducting a series of experiments at temperatures of 1123, 1173 and 1223 K for 2, 4 and 8 h.The boride layer was characterized by optical microscopy, X-ray diffraction technique and micro-Vickers hardness tester. X-ray diffraction analysis of boride layers on the surface of the steels revealed the existence of FeB, Fe2B and CrB compounds.The thickness of boride layer increases by increasing boriding time and temperature for all steels. The hardness of the boride compounds formed on the surface of steels AISI 52100 and AISI 440C ranged from 1530 to 2170 HV0.05 and 1620 to 1989 HV0.05, respectively whereas Vickers hardness values of untreated steels AISI 440C and AISI 52100 were 400 HV0.05 and 311 HV0.05, respectively. The activation energies (Q) of borided steels were 340.426 kJ/mol for AISI 440C and 269.638 kJ/mol for AISI 52100. The growth kinetics of the boride layers forming on the AISI 440C and AISI 52100 steels and thickness of boride layers were also investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号