首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5853篇
  免费   321篇
  国内免费   5篇
电工技术   78篇
综合类   13篇
化学工业   1505篇
金属工艺   138篇
机械仪表   115篇
建筑科学   402篇
矿业工程   29篇
能源动力   146篇
轻工业   456篇
水利工程   50篇
石油天然气   8篇
无线电   456篇
一般工业技术   1232篇
冶金工业   254篇
原子能技术   37篇
自动化技术   1260篇
  2024年   11篇
  2023年   102篇
  2022年   140篇
  2021年   229篇
  2020年   150篇
  2019年   129篇
  2018年   191篇
  2017年   165篇
  2016年   248篇
  2015年   242篇
  2014年   301篇
  2013年   400篇
  2012年   380篇
  2011年   463篇
  2010年   356篇
  2009年   340篇
  2008年   341篇
  2007年   318篇
  2006年   240篇
  2005年   211篇
  2004年   159篇
  2003年   151篇
  2002年   126篇
  2001年   81篇
  2000年   80篇
  1999年   66篇
  1998年   78篇
  1997年   45篇
  1996年   51篇
  1995年   57篇
  1994年   37篇
  1993年   34篇
  1992年   30篇
  1991年   21篇
  1990年   18篇
  1989年   18篇
  1988年   16篇
  1987年   14篇
  1986年   10篇
  1985年   6篇
  1984年   24篇
  1983年   9篇
  1982年   9篇
  1981年   8篇
  1980年   7篇
  1978年   7篇
  1977年   5篇
  1976年   10篇
  1975年   6篇
  1974年   6篇
排序方式: 共有6179条查询结果,搜索用时 0 毫秒
941.
The economic viability of solar collector systems for domestic hot water (DHW) generation is strongly linked to the cost of such systems. Installation and hardware costs must be reduced by 50% to allow significant market penetration. An attractive approach to cost reduction is to replace glass and metal parts with less expensive, lighter weight polymeric components. Weight reduction decreases the cost of shipping, handling, and installation. The use of polymeric materials also allows the benefits and cost savings associated with well established manufacturing processes, along with savings associated with improved fastening, reduced part count, and overall assembly refinements. A key challenge is to maintain adequate system performance and assure requisite durability for extended lifetimes. Results of preliminary and ongoing screening tests for a large number of candidate polymeric glazing materials are presented. Based on these results, two specific glazings with moderate and poor weathering stability are selected to demonstrate how a service lifetime methodology can be applied to accurately predict the optical performance of these materials during in-service use. A summary is given for data obtained by outdoor exposure and indoor testing of polyvinyl chloride (PVC) and high temperature modified polycarbonate copolymer (coPC) materials, and an initial risk analysis is given for the two materials. Screening tests and analyses for service lifetime prediction are discussed. A methodology that provides a way to derive correlations between degradation experienced by materials exposed to controlled accelerated laboratory exposure conditions and materials exposed to in-service conditions is given, and a validation is presented for the methodology based upon durability test results for PVC and coPC.  相似文献   
942.
In service tensile and compressive stresses occur in refractory linings, these stresses lead to creep of refractories. Ordinary refractories experience creep of the primary stage and may further proceed to the secondary and tertiary creep stage. For the development of advanced material models for finite element simulations it is necessary to investigate the creep behavior in all three creep stages under tensile and compressive loads. Hence, two advanced high temperature uniaxial creep testing devices, applying a wide range of tensile and compressive loads, were used to determine the three creep stages in a reasonable time under service related loading conditions. The Norton–Bailey creep equations and an inverse identification procedure were applied for the evaluation of the experimental results. A magnesia refractory was studied at elevated temperatures and its respective creep parameters for each stage were determined. The stress dependency on the creep behavior can be seen clearly on the creep curves and the corresponding creep parameters. Furthermore, a comparative study of creep parameters and creep rates was performed between the magnesia refractory and a magnesia-chromite refractory. The results demonstrate the significant asymmetrical creep behavior in tension and compression for both materials. The creep investigation in this paper favors the requirement for consideration of the three stage creep behavior and the asymmetrical creep behavior in thermomechanical modelling activities of industrial vessels.  相似文献   
943.
The primary goal of optogenetics is the light-controlled noninvasive and specific manipulation of various cellular processes. Herein, we present a hybrid strategy for targeted protein engineering combining computational techniques with electrophysiological and UV/visible spectroscopic experiments. We validated our concept for channelrhodopsin-2 and applied it to modify the less-well-studied vertebrate opsin melanopsin. Melanopsin is a promising optogenetic tool that functions as a selective molecular light switch for G protein-coupled receptor pathways. Thus, we constructed a model of the melanopsin Gq protein complex and predicted an absorption maximum shift of the Y211F variant. This variant displays a narrow blue-shifted action spectrum and twofold faster deactivation kinetics compared to wild-type melanopsin on G protein-coupled inward rectifying K+ (GIRK) channels in HEK293 cells. Furthermore, we verified the in vivo activity and optogenetic potential for the variant in mice. Thus, we propose that our developed concept will be generally applicable to designing optogenetic tools.  相似文献   
944.
While renewable heat makes up only 13 % of overall German heat consumption, the share of renewable electricity produced from wind, solar, water, and geothermal power already reached 36 % of overall electricity consumption in 2017. One measure to support the integration of renewable heat in the German energy system is the use of heat storage systems. Although water‐based heat storage systems for temperatures up to 100 °C are state of the art, systems for temperatures up to several hundred degrees Celsius are still under investigation or in the demonstration phase. Therefore, this work focuses on the development of a simulation model for analyzing and engineering fixed‐bed thermal storage systems that are filled with an inert bulk material such as stone fragments.  相似文献   
945.
During operation, thermomechanical stresses occur in refractory linings. Under elevated stress and temperatures, these ceramics experience primary creep, which can further proceed to the secondary and tertiary creep stages. This necessitates a characterization of their three-stage creep behavior. Hence, two advanced uniaxial tensile and compressive creep testing devices are utilized. The Norton-Bailey creep equations and an inverse identification procedure are applied for the evaluation of the creep curves. To account for the full three-stage creep behavior in thermomechanical modelling activities, a creep-stage transition criterion is identified and subsequently implemented together with the Norton-Bailey creep-strain rate representations in a new developed creep model. The finite element simulation results from different creep testing procedures are in accordance with the corresponding experimental results of a magnesia-chromite refractory ceramic. The study also reveals the temperature-dependent asymmetrical creep behavior of the material in terms of the creep-strain rates and critical creep strains.  相似文献   
946.
The materials typically used for oxygen transport membranes, Ba0.5Sr0.5Co0.8Fe0.2O3?δ (BSCF) and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) tend to decompose due to their low thermochemical stability under reducing atmosphere. Fe- and Co-doped SrTiO3 (SrTi1-x-yCoxFeyO3-δ, x + y ≤ 0.35) (STCF) materials showing an oxygen transport comparable to LSCF have great potential for application in ion-transport-devices. In this study, the thermochemical stability of pure perovskite-structured STCF was investigated after annealing in a syngas atmosphere at 600–900 °C. The phase composition of the materials after annealing was characterized by means of X-ray diffraction (XRD). The thermodynamic activities of SrO, FeO, and CoO in the STCF materials were evaluated using Knudsen effusion mass spectrometry (KEMS). Co-doped SrTiO3 (STC) materials were not stable after annealing in the syngas atmosphere above 5 mol% Co-substitution. Ruddlesden-Popper-like phases and SrCO3 were detected after annealing at 600 °C. In contrast, Fe substitution (STF) showed good stability after annealing in syngas upto 35 mol% substitution.  相似文献   
947.
In the present research, different adhesive techniques were used to set up fillings with composite resins. After the application of etch and rinse or self etch adhesive technique, marginal adaptation of composite fillings was estimated by the length of margins without gaps, and by the microretention of resin in enamel and dentin. The study material consisted of 40 extracted teeth. Twenty Class V cavities were treated with 35% phosphorous acid and restored after rinsing by Adper Single Bond 2 and Filtek UltimateASB/FU 3M ESPE composite system. The remaining 20 cavities were restored by Adper Easy OneAEO/FU 3M ESPE composite system. Marginal adaptation of composite fillings was examined using a scanning electron microscope (SEM). The etch and rinse adhesive technique showed a significantly higher percentage of margin length without gaps (in enamel: 92.5%, in dentin: 57.3%), compared with the self‐etch technique with lower percentage of margin length without gaps, in enamel 70.4% (p < .001), and in dentin‐22.6% (p < .05). In the first technique, microretention was composed of adhesive and hybrid layers as well as resin tugs in interprismatic spaces of enamel, while the dentin microretention was composed of adhesive and hybrid layers with resin tugs in dentin canals. In the second technique, resin tugs were rarely seen and a microgap was dominant along the border of restoration margins. The SEM analysis showed a better marginal adaptation of composite resin to enamel and dentin with better microretention when the etch and rinse adhesive procedure was applied.  相似文献   
948.
Energy used in buildings is responsible for more than 40% of energy consumption and greenhouse gas (GHG) emissions of the EU and their share in cost-efficient GHG mitigation potentials is estimated to be even higher. In spite of its huge savings potential of up to 80%, achievements are very slow in the building sector and much stronger political action seems to be needed. One important step in this direction has been the recast of the Energy Performance of Buildings Directive (EPBD) in autumn 2009. However, strong national implementation including powerful packages of flanking measures seems to be crucial to really make significant progress in this important field. In order to directly improve political action, we provide a differentiated country-by-country bottom up simulation of residential buildings for the whole EU, Norway, Iceland, Croatia and Liechtenstein. The analysis provides a database of the building stock by construction periods, building types, as well as typical building sizes. It includes a simulation of the thermal quality and costs of the components of the building shell for new buildings as well as the refurbishment of the existing building stock. Based on this differentiated analysis, we show in detail what would be needed to accelerate energy savings in the building sector and provide a more precise estimate of the potentials to be targeted by particular policies. We demonstrate, e.g. that the potential of building codes set via the EPBD would be located mainly in those countries that already have quite stringent codes in place. We show as well the high relevance of accelerating refurbishments and re-investment cycles of buildings. By providing a clear estimate of the full costs related to such a strategy, we highlight a major obstacle to accelerated energy-efficient building renovation and construction.  相似文献   
949.
The growth of vapor bubbles is studied numerically in a microchannel with asymmetric surface features. The channel design is chosen such that evaporation results in vapor bubbles growing only along a predefined direction. The principle relies on capillary forces and the pinning/depinning of three-phase contact lines at sharp edges of the wall geometry. Analytical expressions are derived predicting the direction of bubble growth and allowing to assess the robustness of a specific channel geometry in terms of supporting unidirectional bubble growth. From these expressions design rules for microchannels incorporating geometrical parameters and the wall contact angle of the liquid phase can be derived. The numerical calculations are performed based on an extended Volume-of-Fluid method accounting for phase change. The results confirm that under specific conditions, vapor bubbles only expand in one direction, thereby corroborating the analytical model. The presented concept may find applications in designing microchannels for stabilized flow boiling or micropumps/-actuators relying on phase change.  相似文献   
950.
Stefan Lochner   《Energy》2011,36(5):2483-2492
Rising import dependency, increasing market liberalization and cross-border trade and security of supply fears facilitate investments in natural gas supply infrastructures in Europe. In order to ensure an efficient allocation of capital resources, it is important to identify congestion in the existing system and investment requirements based on economic principles. This paper first outlines an analytical framework for the identification of bottlenecks and the evaluation of transport capacities and the cost of congestion based on nodal prices. Secondly, an infrastructure model of the European gas market with high temporal and spatial granularity which exhibits the characteristics of the theoretical model is introduced. Parameterizing the model with the existing infrastructure and applying a demand and supply scenario for the year 2015, congestion mark-ups between countries in Europe are estimated. This approach indicates potential bottlenecks which might arise within the next five years and quantifies their economic costs. With only some temporary congestion, physical market integration is found to be high in Western Europe. In Eastern Europe, severe bottlenecks are identified and discussed. Implications for efficient investment decisions arising from the findings are examined in the context of the theoretical considerations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号