首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3043篇
  免费   187篇
  国内免费   3篇
电工技术   31篇
综合类   6篇
化学工业   794篇
金属工艺   53篇
机械仪表   55篇
建筑科学   121篇
矿业工程   12篇
能源动力   114篇
轻工业   264篇
水利工程   30篇
石油天然气   7篇
武器工业   1篇
无线电   271篇
一般工业技术   545篇
冶金工业   253篇
原子能技术   24篇
自动化技术   652篇
  2024年   6篇
  2023年   48篇
  2022年   149篇
  2021年   144篇
  2020年   94篇
  2019年   89篇
  2018年   113篇
  2017年   92篇
  2016年   112篇
  2015年   98篇
  2014年   129篇
  2013年   219篇
  2012年   165篇
  2011年   262篇
  2010年   171篇
  2009年   155篇
  2008年   201篇
  2007年   141篇
  2006年   127篇
  2005年   77篇
  2004年   61篇
  2003年   59篇
  2002年   53篇
  2001年   41篇
  2000年   38篇
  1999年   32篇
  1998年   87篇
  1997年   60篇
  1996年   42篇
  1995年   33篇
  1994年   24篇
  1993年   21篇
  1992年   8篇
  1991年   6篇
  1990年   5篇
  1989年   6篇
  1988年   9篇
  1987年   3篇
  1985年   5篇
  1983年   2篇
  1982年   7篇
  1981年   2篇
  1980年   8篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1976年   7篇
  1975年   6篇
  1970年   2篇
  1968年   2篇
排序方式: 共有3233条查询结果,搜索用时 15 毫秒
971.
An analytical solution is proposed to predict the fully developed Nusselt number for laminar flow in circular pipes, as arising from exponential heating. The solution is obtained in terms of Confluent Hypergeometric Functions, characterized by fast convergence and easy implementation. Both positive and negative exponents are considered. The range of practical interest is discussed.  相似文献   
972.
Natural rubber/cis‐1,4‐polybutadiene (NR/BR) blends with two types of layered nanofillers, montmorillonite (MMT) and layered double hydroxide (LDH), both in pristine and organically modified forms are produced and investigated. Faster curing is found for all the NR/BR blends, except for the one containing the unmodified MMT. This effect can be attributed to the groups placed in the interlayer regions of the clays; more precisely to ammonium groups for the organo‐MMTs and to ? OH groups for LDHs. Mechanical properties and thermal stability of rubber compounds are investigated. It has been demonstrated that the performance of the final nanocomposite is significantly affected by the kind of clay. Particularly, the organo‐MMTs provoke an improvement of the mechanical properties and increase the thermal stability of about 4–5° C in respect to the pure NR/BR matrix. On the contrary, the poor compatibility of unmodified MMT and of LDH clays with the rubber blend is evident and no enhancement on the composite performance has been observed. POLYM. ENG. SCI., 2013. © Society of Plastics Engineers  相似文献   
973.
A simple two-fluid model is validated by comparing single-jet fluidization experiments and numerical predictions. Subsequently, flow pattern and jet penetration depth are explored numerically in the bed with double jets under equal and unequal gas velocities. Glass balltoni with a density of 2550 kg/m3 and a diameter of 275 μm is employed as solid phase. The model used in this study considers the effect of the dispersed solid phase on both gas and particle momentum equations of the inviscid model A (Gidaspow, 1994). Numerical simulations are carried out in the platform of CFX 4.4, a commercial CFD code, together with user-defined FORTRAN subroutines. Both jet penetration depth and jet frequency predicted are in good quantitative agreement with measurements in an incipiently fluidized bed with a single jet. By combining solid volume fraction distribution and particle-phase velocity vector profile, three flow patterns (isolated, merged and transitional jets) are identified in the gas-fluidized bed with double jets, which depend more on the nozzle distance than the jet gas velocity. For the equal jet gas velocity, the jet penetration depth decreases with increasing nozzle distance in the merged-jet and transitional-jet regions, then reaches a minimum value in the transitional-jet region, and finally keeps steady in the isolated-jet region. For the unequal jet gas velocity, the merged jet penetration depth increases with increase in the velocity of one jet as the other jet gas velocity is fixed, whilst the jet penetration depths change a little in the transitional-jet region and remain a constant in the isolated-jet region.  相似文献   
974.
Docking models of fructosyl amine oxidase (FAOD) from the marineyeast Pichia N1-1 (N1-1 FAOD) with the substrates fructosylvaline (f-Val) and fructosyl-N-lysine (f-Lys) were producedusing three-dimensional protein model as reported previously(Miura et al., 2006, Biotechnol. Lett., 28, 1895-1900). Theresidues involved in recognition of substrates were proposed,particularly Asn354, which interacts closely with f-Lys, butnot with f-Val. Substitution of Asn354 to histidine and lysinesimultaneously resulted in an increase in activity of f-valand a decrease in activity of f-Lys and thus, increasing thespecificity for f-Val from 13- to 19-fold. In addition to creatingtwo mutant FAODs with great potential for the measurement ofglycated hemoglobin, we have provided the first structural modelof substrate binding with eukaryotic FAOD, which is expectedto contribute to further investigation of FAOD.  相似文献   
975.
A novel fluorescence sensing system for branched-chain amino acids (BCAAs) was developed based on engineered leucine/isoleucine/valine-binding proteins (LIVBPs) conjugated with environmentally sensitive fluorescence probes. LIVBP was cloned from Escherichia coli and Gln149Cys, Gly227Cys, and Gln254Cys mutants were generated by genetic engineering. The mutant LIVBPs were then modified with environmentally sensitive fluorophores. Based on the fluorescence intensity change observed upon the binding of the ligands, the MIANS-conjugated Gln149Cys mutant (Gln149Cys-M) showed the highest and most sensitive response. The BCAAs Leu, Ile, and Val can each be monitored at the sub-micromolar level using Gln149Cys-M. Measurements were also carried out on a mixture of BCAFAs and revealed that Gln149Cys-M-based measurement is not significantly affected by the change in the molar ratio of Leu, Ile and Val in the sample. Its high sensitivity and group-specific molecular recognition ability make the new sensing system ideally suited for the measurement of BCAAs and the determination of the Fischer ratio, an indicator of hepatic disease involving metabolic dysfunction.  相似文献   
976.
Although research in the field of ionic liquids for electrochemical applications has led to a deeper knowledge in their electrochemical properties, doubts in the interpretation of the experimental results are still encountered in the literature due to the poor control of the experimental conditions and/or to the limited number of experiments conducted. In this work, the effect of water and oxygen traces on the cathodic stability window of hydrophobic, air-stable ionic liquids composed of N-alkyl-N-methylpyrrolidinium (PYR1A+) cations and bis(trifluoromethanesulfonyl)imide (TFSI) anion, is reported. The extensive investigation performed by linear sweep voltammetry (LSV) and cyclic voltammetry (CV) indicates that the TFSI anion is cathodically stable if the ionic liquid is pure and dry. The N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids investigated showed featureless cathodic linear sweep voltammetry curves before the massive cation decomposition took place at very low potentials.  相似文献   
977.
Among the wide variety of piezoelectric materials available, polymers offer an interesting solution because of their high mechanical flexibility, easy processing, and conformable features; they maintain good ferroelectric and piezoelectric properties. The most prominent examples of these are poly(vinylidene fluoride) (PVDF) and its copolymer, poly(vinylidene difluoride–trifluoroethylene) [P(VDF–TrFE)]. An attractive prospective consists of the preparation of nanostructured polymers. It has been shown that the dimensional confinement of such macromolecules down to the nanoscale can improve their piezoelectric properties because the tailoring of the chemical structure is performed at the molecular level. In this review, we show how nanostructured polymers can be obtained and discuss reports on the ferroelectric and piezoelectric properties of nanostructured PVDF and P(VDF–TrFE) materials. In particular, we show how dimensional confinement leads to piezoelectric nanostructures with relevant performances, with a focus on the macromolecular structural arrangement that enhances their behavior. Experimental results and applications are also reported to compare the performances of different nanostructuration processes and the polymer efficiencies as piezoelectric materials. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41667.  相似文献   
978.
We present the properties and potentialities of light emitting devices based on amorphous Si nanoclusters. Amorphousnanostructures may constitute an interesting alternative to Si nanocrystals for the monolithic integration of optical andelectrical functions in Si technology. In fact, they exhibit an intense room temperature electroluminescence (EL). The ELproperties of these devices have been studied as a function of current and of temperature. Moreover, to improve theextraction efficiency of the light, we have integrated the emitting system with a 2D photonic crystal structure opportunelyfabricated by using conventional optical lithography to reduce the total internal reflection of the emitted light. The extractionefficiency in such devices increases by a factor of 4 at a resonance wavelength.  相似文献   
979.
980.
Sorption kinetics and diffusion of hexane, heptane, octane, nonane, decane, cyclohexane, and 2,2,4-trimethylpentane through tetrafluoroethylene/propylene copolymer membranes were studied using the gravimetric sorption method at 30, 45, and 60°C. Coefficients of diffusion were calculated from Fick's equation. From these data, the permeability coefficients were obtained. Analytical solutions of Fick's relations were used to estimate the liquid concentration profiles into the polymeric membranes at different times. The profiles of liquid concentrations were also simulated for the polymer–solvent systems using the numerical simulation method. Activation parameters for diffusion and sorption were evaluated and these results are discussed in terms of the molecular sizes and geometries of liquids (i.e., shape) as well as temperature. The diffusion coefficients follow a systematic decrease with increasing size of the penetrant molecules. The activation energies i.e., ED values, increase with increasing size of n-alkanes. © 1996 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号