首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   438篇
  免费   26篇
  国内免费   3篇
电工技术   1篇
化学工业   124篇
金属工艺   31篇
机械仪表   21篇
建筑科学   4篇
能源动力   17篇
轻工业   35篇
水利工程   1篇
无线电   22篇
一般工业技术   151篇
冶金工业   24篇
原子能技术   3篇
自动化技术   33篇
  2023年   10篇
  2022年   20篇
  2021年   19篇
  2020年   8篇
  2019年   11篇
  2018年   19篇
  2017年   29篇
  2016年   18篇
  2015年   16篇
  2014年   18篇
  2013年   44篇
  2012年   19篇
  2011年   34篇
  2010年   19篇
  2009年   12篇
  2008年   14篇
  2007年   21篇
  2006年   16篇
  2005年   8篇
  2004年   7篇
  2003年   19篇
  2002年   7篇
  2001年   3篇
  2000年   6篇
  1999年   8篇
  1998年   11篇
  1997年   10篇
  1996年   6篇
  1995年   3篇
  1994年   8篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1984年   3篇
  1982年   1篇
  1980年   1篇
排序方式: 共有467条查询结果,搜索用时 15 毫秒
71.
An experimental investigation has been carried out with aa point focusing dish reflector of 12 square meters aperture area,exposed to the average direct normal irradiations of 810 W/m2.This work focuses on enhancinge the energy and exergy efficiencies of the cavity receiver by minimizing the temperature difference between the wall and heat transfer fluids.Two heat transfer fluids Water and SiC + water nano fluid have been prepared from 50 nm particle size and 1% of volume fraction,and experimented separately for the flow rates of 0.2 lpm to 0.6 lpm with an interval of 0.1 lpm.The enhanced thermal conductivity of nano fluid is 0.800115 W/mK with the keff/kb ratio of 1.1759 determined by using the Koo and Kleinstreuer correlation.The maximum attained energy and exergy efficiencies are 29.14% and 24.82% for water,and 32.91% and 39.83% for SiC+water nano fluid.The nano fluid exhibits enhanced energy and exergy efficiency of 12.94% and 60.48% than that of water at the flow rate of 0.5 lpm.The result shows that the system with SiC+Water produces higher exergy efficiency as compared to energy efficiency;in the case ofwater alone,the energy efficiency is higher than exergy efficiency.  相似文献   
72.
Aluminium/ammonium perchlorate (40/60 wt.%) is a pyrotechnic composition widely used as an igniter charge for small calibre rocket motors. Five different types of aluminium powders with specific surface area varying from 0.52 m2/g to 6.00 m2/g have been studied to evaluate the influence of specific surface area on the ignition characteristics of the charge. While the peak pressure varies from 35.5 ksc to 54.5 ksc (0.30 g in 48.0 cm3 vol.), the corresponding time to Pmax varies from 11.2 ms to 1.6 ms showing higher reactivity of the mix with increase in aluminium surface area. This order of reactivity agrees with the order of reactivity determined from the DTG curves of the metal oxidation by comparing the peak height to half width ratio. However, the total gas generated by all the charges is approximately the same and the difference in peak pressure is caused by the difference in the rate of reaction and after about 30 ms all the compositions exhibit the same order of temperature and pressure. The charge has got an ignition temperature of about 640 K and the ignition is preceded by the exothermic decomposition of ammonium perchlorate. The activation energy varies from 92.2 kJ/mol to 127.6 kJ/mol and the corresponding pre-exponential factor from 9.7 × 106 min−1 to 7.1 × 109 min−1 and they exhibit the kinetic compensation effect with an isokinetic temperature of 647 K.  相似文献   
73.
LM6 aluminium alloy with 2.5–10 wt% of copper coated short steel fiber reinforced composites were prepared using squeeze casting process. Microstructure and mechanical properties viz., hardness, tensile strength and ductility were investigated. Dry sliding wear behaviour was tested by considering sliding distance and load. Fracture surface and worn surface were examined using field emission scanning electron microscope (FESEM). Hardness of composites increased with increasing wt% of fiber. Tensile strength of composites increased up to 19% for 5 wt% fiber composites. Further addition of fibers decreased the tensile strength of composites. Ductility of the composites decreased with the addition of fibers into the matrix. Wt% of fibers significantly decreased the weight loss, coefficient of friction and wear rate. Also the cumulative weight loss decreased up to 57% for 10 wt% of composites compared to LM6 aluminium alloy. Fracture surface of composite tensile specimen showed dimple formation and fiber pullout. Worn surface of matrix showed long continuous grooves due to local delamination on the surface. However, worn surface of composites showed fine and smooth grooves due to ploughing rather than local delamination. Copper coated steel fiber reinforcement in LM6 aluminium alloy exhibited better mechanical properties and wear resistance compared to matrix.  相似文献   
74.
The recently published ‘FE–Meshfree’ QUAD4 element is extended to geometrical non‐linear analysis. The shape functions for this element are obtained by combining meshfree and finite element shape functions. The concept of partition of unity (PU) is employed for the purpose. The new shape functions inherit their higher order completeness properties from the meshfree shape functions and the mesh‐distortion tolerant compatibility properties from the finite element (FE) shape functions. Updated Lagrangian formulation is adopted for the non‐linear solution. Several numerical example problems are solved and the performance of the element is compared with that of the well‐known Q4, QM6 and Q8 elements. The results show that, for regular meshes, the performance of the element is comparable to that of QM6 and Q8 elements, and superior to that of Q4 element. For distorted meshes, the present element has better mesh‐distortion tolerance than Q4, QM6 and Q8 elements. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
75.
Paper and pulp industry effluent was enzymatically hydrolysed using crude cellulase enzyme (0.8–2.2FPU/ml) obtained from Trichoderma reesei and from the hydrolysate biohydrogen was produced using Enterobacter aerogenes. The influence of temperature and incubation time on enzyme production was studied. The optimum temperature for the growth of T. reesei was found to be around 29 °C. The enzyme activity of 2.5 FPU/ml was found to produce about 22 g/l of total sugars consisting mainly of glucose, xylose and arabinose. Relevant kinetic parameters with respect to sugars production were estimated using two fraction model. The enzymatic hydrolysate was used for the biohydrogen production using E. aerogenes. The growth data obtained for E. aerogenes were fitted well with Monod and Logistic equations. The maximum hydrogen yield of 2.03 mol H2/mol sugar and specific hydrogen production rate of 225 mmol of H2/g cell/h were obtained with an initial concentration of 22 g/l of total sugars. The colour and COD of effluent was also decreased significantly during the production of hydrogen. The results showed that the paper and pulp industry effluent can be used as a substrate for biohydrogen production.  相似文献   
76.
Materials used in soldier protective structures, such as armor, vehicles and civil infrastructures, are being improved for performance in extreme dynamic environments. Nanocrystalline metals show significant promise in the design of these structures with superior strengths attributed to the dislocation-based and grain-boundary-based processes as compared to their polycrystalline counterparts. An optimization of these materials, however, requires a fundamental understanding of damage evolution at the atomic level. Accordingly, atomistic molecular dynamics simulations are performed using an embedded-atom method (EAM) potential on three nano-crystalline aluminum atom systems, one a Voronoi-based nano-crystalline system with an average grain size of 10 nm, and the other two single crystals. These simulations are performed under the condition of uniaxial expansion at several strain rates ranging from 106s-1 to 1010s-1. Results for the effective stress are discussed with the aim of establishing the role of the strain rate and microstructure on the evolution of the plastic strain and void volume fraction and the eventual loss of stress carrying capability of the atom systems.  相似文献   
77.
78.
Commercially pure Ti and Ti-15Mo specimens were subjected to alkali-hydrogen peroxide and subsequent heat treatment to produce a nanoporous titanate gel layer with anatase phase. The surface morphology of the untreated, alkali-hydrogen peroxide treated and alkali-hydrogen peroxide heat treated specimens before and after 7 days of immersion in simulated body fluid was characterized using X-ray Diffractometer (XRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FT-IR). The formation of nanoporous titanate gel layer and the growth of apatite layer over the surface modified specimens after 7 days of immersion in simulated body fluid were confirmed. Further, the electrochemical corrosion behavior of all the specimens was examined using potentiodynamic polarization and electrochemical impedance spectroscopic techniques.  相似文献   
79.
In the first part of this paper, we consider a kanban-controlled flowshop and present recursive equations for time-tabling of containers in a given sequence. The flowshop is characterized by the following: a production batch of a part-type (or job) divided into kanban lots or containers; production kanbans to control the loading of containers on machines or workstations; withdrawal kanbans to regulate the movement of containers between two consecutive buffer storages; periodic material handling of containers; dual blocking mechanisms operative on workstations and material handling; and sequence-dependent set-up times of containers. Considering different types of problems, recursive equations have been developed for time-tabling of containers in a given sequence.  相似文献   
80.
The inhibition efficiency (IE) of an aqueous extract of white flower, namely, Hibiscus rosa-sinensis Linn., in controlling corrosion of carbon steel immersed in an aqueous solution containing 60 ppm of Cl-has been evaluated by the mass loss method. The flower extract (FE) shows good IE. In the presence of Zn2+, excellent IE is shown by the flower extract. A synergistic effect exists between the flower extract and Zn2+. The mechanistic aspects of corrosion inhibition have been investigated by polarization study and AC impedance spectra. Polarization study reveals that the formulation consisting of flower extract and Zn2+ functions as a mixed inhibitor. AC impedance spectra reveal that a protective film is formed on the metal surface. The active principle in the flower extract is quercetin-3-O-glucoside. This has been confirmed by UV-visible absorption spectra. The protective film formed on the metal surface has been analyzed by FT-IR and AFM spectra. It is found that the protective film consists of Fe2+-quercetin-3-O-glucoside complex and Zn(OH)2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号