首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   2篇
电工技术   1篇
化学工业   43篇
金属工艺   7篇
机械仪表   4篇
轻工业   4篇
无线电   22篇
一般工业技术   52篇
冶金工业   2篇
自动化技术   22篇
  2023年   1篇
  2022年   9篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   7篇
  2017年   8篇
  2016年   8篇
  2015年   10篇
  2014年   6篇
  2013年   17篇
  2012年   9篇
  2011年   15篇
  2010年   9篇
  2009年   12篇
  2008年   6篇
  2007年   5篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  1997年   1篇
  1993年   3篇
排序方式: 共有157条查询结果,搜索用时 6 毫秒
101.
102.
Tunable magnonic properties are demonstrated in two‐dimensional magnonic crystals in the form of artificial ferromagnetic nanodot lattices with variable lattice symmetry. An all‐optical time‐domain excitation and detection of the collective precessional dynamics is performed in the strongly magnetostatically coupled Ni80Fe20 (Py) circular dot lattices arranged in different lattice symmetry such as square, rectangular, hexagonal, honeycomb, and octagonal symmetry. As the symmetry changes from square to octagonal through rectangular, hexagonal and honeycomb, a significant variation in the spin wave spectra is observed. The single uniform collective mode in the square lattice splits in two distinct modes in the rectangular lattice and in three distinct modes in the hexagonal and octagonal lattices. However, in the honeycomb lattice a broad band of modes are observed. Micromagnetic simulations qualitatively reproduce the experimentally observed modes, and the simulated mode profiles reveal collective modes with different spatial distributions with the variation in the lattice symmetry determined by the magnetostatic field profiles. For the hexagonal lattice, the most intense peak shows a six‐fold anisotropy with the variation in the azimuthal angle of the external bias magnetic field. Analysis shows that this is due to the angular variation of the dynamical component of magnetization for this mode, which is directly influenced by the variation of the magnetostatic field on the elements in the hexagonal lattice. The observations are important for tunable and anisotropic propagation of spin waves in magnonic crystal based devices.  相似文献   
103.
Journal of Materials Science: Materials in Electronics - Herein, different weight percentage ratios composites of montmorillonite-K10 clay (Mt) with semiconductor organic salt...  相似文献   
104.
In this paper, a novel maximized channel capacity based power allocation using differential evolution (DE) algorithm for multi relay Hybrid Decode-Amplify-Forward cooperative network in a Rayleigh fading environment is proposed. The closed form expression for average channel capacity with the tight approximation is derived. The proposed parametric optimization problem is defined on basis of the decoding capability of the relay. Further, the relay powers are optimized using the optimized power allocation factor. The performance of the proposed technique is validated for different channel variances and for different relay locations. From the simulation analysis, it is observed that the proposed DE based power allocation scheme performs better than the existing equal power allocation scheme.  相似文献   
105.
106.
Mesoporous ZrO2–MoO3/WO3 mixed oxides have been synthesized through a novel, convenient one step sol–gel technique. Water soluble molybdate/tungstate and zirconium (IV) carbonate complex have been employed in presence of cationic surfactant, tetradecyltrimethylammonium bromide under basic condition. The synthesized materials have shown high specific surface areas and narrow pore-size distributions which were achieved after optimization of the amount of surfactant. Mesoporous ZrO2–MoO3 and ZrO2–WO3 mixed oxides have shown specific surface areas of 228 and 275 m2 g−1 and pore sizes of 3.65 nm and 4.33 nm, respectively. FTIR and Raman studies prove the formation of hetero bonding in mixed oxides.  相似文献   
107.
Susmita Pal 《Polymer》2005,46(19):8321-8330
The crystallization rates of poly(3-alkyl thiophene) (P3AT) cocrystals having different alkyl chain length (e.g. hexyl and octyl) of the components are measured using differential scanning calorimetry (DSC) technique. Two pairs of cocrystals with varying compositions of the components viz. poly(3-octyl thiophene) (P3OT(R), regioregularity 89 mol%) and poly(3-hexyl thiophene) [P3HT(R), regioregularity 92 mol% and P3HT-2 regioregularity 82 mol%] are used. In both the systems the isothermal temperature range (TR) in the same time scale of crystallization is found to decrease with increasing alkyl chain length in the blends. The crystallization rate at the same Tc decreases with increasing alkyl chain length P3AT concentration and the Avrami exponent values of cocrystals are same with those of the component values. The low Avrami exponent values (0.23-1.16) in all the samples suggest the presence of rigid amorphous portion which can not diffuse out quickly from the crystal growth front (soft impingement). Analysis of crystallization rate using Laurintzen-Hoffman (L-H) growth rate theory indicates that there is regime-I to regime-II transition in all the samples. The product of lateral (σ) and end surface energy (σe) values are found to decrease with increasing the concentration of longer alkyl chain P3AT in the blend. Analysis of σ values according to a theory of Hoffman et al. [Hoffman JD, Miller RL, Marand H, Rotiman DR. Macromolecules 1992;25:2221. [14]] indicates that there is chain extension of the components in the melt of the blends, however, the entropy of cocrystallization has different sign to the two systems. Cocrystallization in P3HT(R)/P3OT(R) system is an entropy driven process but that in P3HT(2)/P3OT(R) system is entropy forbidden process. A possible explanation of cocrystallization in the later system has been attributed from small interaction between the components.  相似文献   
108.
This study explores a combined electrochemical and spectroscopic approach to investigate the degradation of bilirubin, a molecular marker of jaundice in humans using a biocompatible nanohybrid (citrate-functionalized Mn3O4 nanohybrid; C−Mn3O4 NH). The approach is aimed at the development of a facile theranostic tool for treatment, detection, and prognosis of jaundice. Linear sweep voltammetry (LSV) studies on bilirubin, C−Mn3O4 NH, a model carrier protein, and its complex with bilirubin reveal the efficacy of the nanohybrid for both degradation and detection of bilirubin. Furthermore, spectroscopic studies depict that distal electron transfer to be the probable mechanism behind the observed bilirubin degradation in physiological milieu.  相似文献   
109.
In this article, the interplay between structural, electrical, and surface properties in determining the collective behavior of (hydroxyapatite, HAP) and (strontium titanate, ST) composites was reported. The monoliths HAP and ST were synthesized using sol-gel and solid-state reaction, respectively, and were mixed in different atomic concentrations (20, 40, 60, and 80 at.%) to prepare a series of composites. The prepared composites were then subjected to x-ray diffraction (XRD) and Raman analysis for probing the microstructural aspects. The analysis revealed no evidence of a phase that the reaction between the two monoliths might form. The crystallite sizes were in the range of 27.2–37.3 nm, and it increased with the content of ST in the composites. The Raman analysis revealed the presence of rutile that was later found to be the link in the display of bone-like apatite nucleation ability in the monolith ST and its composites. The FESEM analysis revealed that the grain sizes were 64–144 nm between the monoliths and were found to follow a similar trend to the crystallite size. The dielectric constant varied with temperature ranging from 5 to 35 (1 MHz) at 310 K for all the specimens. The dependence of on the grain size of the composites followed a nearly exponential relation. The bone-like apatite forming ability of the composites was studied by incubating the specimens in simulated body fluid (SBF). Additionally, the cytocompatibility (MG63 cell lines) and protein adsorption (bovine serum albumin [BSA]) of the selected specimens were also studied to comprehensively understand the delicate relationship between the electrical and biological properties. The protein adsorption was primarily related to the surface charge, and its dependence was found to be linear. Additionally, the of the composites was ≤35, which compliments the protein adsorption behavior of the specimens. The amount of adsorbed protein for all the specimens considered in this study was in the range of 3–32 μ g/ml. Furthermore, the specimens exhibited excellent cell viability of more than 90%. Based on the physical and biological investigations, 20H-80S was established as the best specimen that blends the characteristic feature of both the monoliths. Finally, the TEM and STEM mapping of the best specimen, projecting the suitability of 20H-80S in the design of electrically active scaffolds and possibly bioelectrets for biomedical applications, was also studied.  相似文献   
110.
Endothelial permeability is a major complication that must be addressed during stroke treatment. Study of the mechanisms underlying blood–brain barrier (BBB) disruption and management of the hypoxic stress-induced permeability of the endothelium following reperfusion are both urgently needed for stroke management. Lysophosphatidic acid (LPA), a bioactive lipid essential for basic cellular functions, causes unfavorable outcomes during stroke progression. LPA-producing enzyme autotaxin (ATX) is regulated in ischemic stroke. We used an electrical cell-substrate impedance sensor (ECIS) to measure endothelial permeability. Mitochondrial bioenergetics were obtained using a Seahorse analyzer. AR-2 probe fluorescence assay was used to measure ATX activity. LPA increased endothelial permeability and reduced junctional protein expression in mouse brain microvascular endothelial cells (MBMEC). LPA receptor inhibitors Ki16425 and AM095 attenuated the LPA-induced changes in the endothelial permeability and junctional proteins. LPA significantly diminished mitochondrial function in MBMEC. ATX was upregulated (p < 0.05) in brain microvascular endothelial cells under hypoxic reperfusion. ATX activity and permeability were attenuated with the use of an ATX inhibitor in a mouse stroke model. The upregulation of ATX with hypoxic reperfusion leads to LPA production in brain endothelial cells favoring permeability. Inhibition of the ATX–LPA–LPAR axis could be therapeutically targeted in stroke to achieve better outcomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号