首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   2篇
电工技术   1篇
化学工业   43篇
金属工艺   7篇
机械仪表   4篇
轻工业   4篇
无线电   22篇
一般工业技术   52篇
冶金工业   2篇
自动化技术   22篇
  2023年   1篇
  2022年   9篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   7篇
  2017年   8篇
  2016年   8篇
  2015年   10篇
  2014年   6篇
  2013年   17篇
  2012年   9篇
  2011年   15篇
  2010年   9篇
  2009年   12篇
  2008年   6篇
  2007年   5篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  1997年   1篇
  1993年   3篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
91.
92.
Kaolinite and montmorillonite were modified with tetrabutylammonium (TBA) bromide, followed by calcination. The structural changes were monitored with XRD, FTIR, surface area and cation exchange capacity measurements. The modified clay minerals were used for adsorption of Fe(III), Co(II) and Ni(II) ions from aqueous solution under different conditions of pH, time and temperature. The uptake of the metal ions took place by a second order kinetics. The modified montmorillonite had a higher adsorption capacity than the corresponding kaolinite. The Langmuir monolayer capacities for the modified kaolinite and montmorillonite were Fe(III): 9.3 mg g− 1 and 22.6 mg g− 1; Co(II): 9.0 mg g− 1 and 22.3 mg g− 1; and Ni(II): 8.4 mg g− 1 and 19.7 mg g− 1. The modified kaolinite interacted with Co(II) in an endothermic manner, but all the other interactions were exothermic. The decrease of the Gibbs energy in all the cases indicated spontaneous adsorption.  相似文献   
93.

Recent advancements in artificial neural networks (ANNs) motivated us to design a simple and faster spectrum prediction model termed the functional link artificial neural network (FLANN). The main objective of this paper is to gather realistic data to obtain utilization statistics for the industrial, scientific and medical band of 2.4–2.5 GHz. To present the occupancy statistics, we conducted measurement in indoors at the Swearingen Engineering Center, University of South Carolina. Further, we introduce different threshold-based spectrum prediction schemes to show the impact of threshold on occupancy, and propose a spectrum prediction algorithm based on FLANN to forecast a future spectrum usage profile from historical occupancy statistics. Spectrum occupancy is estimated and predicted by employing different ANN models including the Feed-forward multilayer perceptron (MLP), Recurrent MLP, Chebyshev FLANN and Trigonometric FLANN. It is observed that the absence of a hidden layer in FLANN makes it more efficient than the MLP model in predicting the occupancy faster and with less complexity. A set of illustrative results are presented to validate the performance of our proposed learning scheme.

  相似文献   
94.
Bioceramic materials are used for the reconstruction or replacement of the damaged parts of the human body. In this study an improved procedure is described for producing ceramic scaffolds with controlled porosity. Bioinert alumina ceramic was used to make porous scaffolds by using indirect fused deposition modeling (FDM), a commercially available rapid prototyping (RP) technique. Porous alumina samples were coated with hydroxyapatite (HAp) to increase the biocompatibility of the scaffolds. Initial biological responses of the porous alumina scaffolds were assessed in vitro using rat pituitary tumor cells (PR1). Both porous alumina and HAp coated alumina ceramics provided favorable sites for cell attachments in a physiological solution at 37 °C, which suggests that these materials would promote good bonding while used as bone implants in vivo. Based on these preliminary studies, similar tests were performed with human osteosarcoma cells. Cell proliferation studies show that both the ceramic materials can potentially provide a non-toxic surface for bone bonding when implanted in vivo.  相似文献   
95.
Over the years hydroxyapatite (HA) coatings have been used to improve biologic properties of Ti‐based load bearing metal implants. However, applicability of HA coated implants is subjected to physical stability of the HA phase and mechanical integrity of the coating‐substrate interface. In this study, we have compared the microstructure and in vitro cell–materials interactions of newly developed laser deposited Ta coatings and radio frequency (RF) induction plasma sprayed HA coatings on Ti substrate. In vitro biocompatibility study, using human osteoblast cell line hFOB, showed equally excellent cellular adherence and growth on Ta and HA coatings. Quantitative assay of cell survivability on these coatings showed that the Ta coatings provide comparable initial cell attachment to that of HA coatings. Microstructural analysis of the coatings showed strong metallurgical bonding without sharp interface between the Ta coating and the Ti substrate, while the interface between HA coating and the Ti substrate was sharp. The interface microstructural features and in vitro cell–materials interactions of Ta coatings on Ti clearly demonstrate their potential to replace HA based coatings for enhanced/early biologic fixation. Other significant benefits of these dense Ta coatings include high toughness, strong bonding with the substrate, and long‐term stability of the interface.  相似文献   
96.
In this article, a signal-to-noise ratio (SNR)-based hybrid decode-amplify-forward scheme in a distributed Alamouti-coded cooperative network is proposed. Considering a flat Rayleigh fading channel environment, the MATLAB simulation and analysis are carried out. In the cooperative scheme, two relays are employed, where each relay is transmitting each row Alamouti code. The selection of SNR threshold depends on the target rate information. The closed form expressions of symbol error rate (SER), the outage probability and average channel capacity with tight upper bounds are derived and compared with the simulation done in MATLAB environment. Furthermore, the impact of relay location on the SER performance is analysed. It is observed that the proposed hybrid relaying technique outperforms the individual amplify and forward and decode and forward ones in the distributed Alamouti-coded cooperative network.  相似文献   
97.
Reactive oxygen species (ROS) cause oxidative stress by generating reactive aldehydes known as 4-hydroxynonenal (4-HNE). 4-HNE modifies protein via covalent adduction; however, little is known about the degradation mechanism of 4-HNE-adducted proteins. Autophagy is a dynamic process that maintains cellular homeostasis by removing damaged organelles and proteins. In this study, we determined the role of a superoxide dismutase (SOD) mimetic MnTnBuOE-2-PyP5+ (MnP, BMX-001) on rotenone-induced 4-HNE aggresome degradation in HL-1 cardiomyocytes. A rotenone treatment (500 nM) given for 24 h demonstrated both increased ROS and 4-HNE aggresome accumulation in HL-1 cardiomyocytes. In addition, cardiomyocytes treated with rotenone displayed an increase in the autophagy marker LC3-II, as shown by immunoblotting and immunofluorescence. A pre-treatment with MnP (20 µM) for 24 h attenuated rotenone-induced ROS formation. An MnP pre-treatment showed decreased 4-HNE aggresomes and LC3-II formation. A rotenone-induced increase in autophagosomes was attenuated by a pre-treatment with MnP, as shown by fluorescent-tagged LC3 (tfLC3). Rotenone increased tubulin hyperacetylation through the ROS-mediated pathway, which was attenuated by MnP. The disruption of autophagy caused HL-1 cell death because a 3-methyladenine inhibitor of autophagosomes caused reduced cell death. Yet, rapamycin, an inducer of autophagy, increased cell death. These results indicated that a pre-treatment with MnP decreased rotenone-induced 4-HNE aggresomes by enhancing the degradation process.  相似文献   
98.
The proposed neural equalizer structure is based on a novel orthogonal basis function (OBF) expansion technique, motivated by genetic evolutionary concept, which utilizes a self-breeding approach to evolve new information to consolidate the final output. Here, the decision at a feedforward neural network (FNN) node termed as expert opinion of a generation undergoes an orthogonal expansion in two dimensions, where one of the outputs possessing the knowledge base for that generation participates in taking the final decision. Hence, a collective judgment based on the expert opinions evolved from decisions of individual generations gives a more rational and heuristic solution compared to a conventional feedforward neural network (CFNN) structure. Propagation of output error backwards and calculation of local gradients at each node become a difficult task as the OBF block is positioned in between the neurons of different layers. In order to circumvent such situation, a new technique has been evolved. The developed equalizer structure using this concept has outperformed the CFNN equalizer with wide margins. Further their bit-error-rate performances are close to that of Bayesian equalizer, which is optimal in the theoretic sense. Application of this proposed technique also reduces the structural and computational complexity of conventional neural equalizers. Hence, this efficient equalizer structures suitable for digital communication channels have the potential for real-time implementation in DSP, FPGA processors also.  相似文献   
99.
In this article, the interplay between structural, electrical, and surface properties in determining the collective behavior of (hydroxyapatite, HAP) and (strontium titanate, ST) composites was reported. The monoliths HAP and ST were synthesized using sol-gel and solid-state reaction, respectively, and were mixed in different atomic concentrations (20, 40, 60, and 80 at.%) to prepare a series of composites. The prepared composites were then subjected to x-ray diffraction (XRD) and Raman analysis for probing the microstructural aspects. The analysis revealed no evidence of a phase that the reaction between the two monoliths might form. The crystallite sizes were in the range of 27.2–37.3 nm, and it increased with the content of ST in the composites. The Raman analysis revealed the presence of rutile that was later found to be the link in the display of bone-like apatite nucleation ability in the monolith ST and its composites. The FESEM analysis revealed that the grain sizes were 64–144 nm between the monoliths and were found to follow a similar trend to the crystallite size. The dielectric constant varied with temperature ranging from 5 to 35 (1 MHz) at 310 K for all the specimens. The dependence of on the grain size of the composites followed a nearly exponential relation. The bone-like apatite forming ability of the composites was studied by incubating the specimens in simulated body fluid (SBF). Additionally, the cytocompatibility (MG63 cell lines) and protein adsorption (bovine serum albumin [BSA]) of the selected specimens were also studied to comprehensively understand the delicate relationship between the electrical and biological properties. The protein adsorption was primarily related to the surface charge, and its dependence was found to be linear. Additionally, the of the composites was ≤35, which compliments the protein adsorption behavior of the specimens. The amount of adsorbed protein for all the specimens considered in this study was in the range of 3–32 μ g/ml. Furthermore, the specimens exhibited excellent cell viability of more than 90%. Based on the physical and biological investigations, 20H-80S was established as the best specimen that blends the characteristic feature of both the monoliths. Finally, the TEM and STEM mapping of the best specimen, projecting the suitability of 20H-80S in the design of electrically active scaffolds and possibly bioelectrets for biomedical applications, was also studied.  相似文献   
100.
Tunable magnonic properties are demonstrated in two‐dimensional magnonic crystals in the form of artificial ferromagnetic nanodot lattices with variable lattice symmetry. An all‐optical time‐domain excitation and detection of the collective precessional dynamics is performed in the strongly magnetostatically coupled Ni80Fe20 (Py) circular dot lattices arranged in different lattice symmetry such as square, rectangular, hexagonal, honeycomb, and octagonal symmetry. As the symmetry changes from square to octagonal through rectangular, hexagonal and honeycomb, a significant variation in the spin wave spectra is observed. The single uniform collective mode in the square lattice splits in two distinct modes in the rectangular lattice and in three distinct modes in the hexagonal and octagonal lattices. However, in the honeycomb lattice a broad band of modes are observed. Micromagnetic simulations qualitatively reproduce the experimentally observed modes, and the simulated mode profiles reveal collective modes with different spatial distributions with the variation in the lattice symmetry determined by the magnetostatic field profiles. For the hexagonal lattice, the most intense peak shows a six‐fold anisotropy with the variation in the azimuthal angle of the external bias magnetic field. Analysis shows that this is due to the angular variation of the dynamical component of magnetization for this mode, which is directly influenced by the variation of the magnetostatic field on the elements in the hexagonal lattice. The observations are important for tunable and anisotropic propagation of spin waves in magnonic crystal based devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号