首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6326篇
  免费   335篇
  国内免费   26篇
电工技术   122篇
综合类   12篇
化学工业   1568篇
金属工艺   184篇
机械仪表   219篇
建筑科学   161篇
矿业工程   3篇
能源动力   478篇
轻工业   756篇
水利工程   69篇
石油天然气   55篇
武器工业   1篇
无线电   676篇
一般工业技术   1213篇
冶金工业   333篇
原子能技术   38篇
自动化技术   799篇
  2024年   22篇
  2023年   122篇
  2022年   251篇
  2021年   424篇
  2020年   286篇
  2019年   306篇
  2018年   355篇
  2017年   315篇
  2016年   304篇
  2015年   220篇
  2014年   305篇
  2013年   603篇
  2012年   389篇
  2011年   447篇
  2010年   304篇
  2009年   243篇
  2008年   198篇
  2007年   177篇
  2006年   149篇
  2005年   102篇
  2004年   74篇
  2003年   100篇
  2002年   71篇
  2001年   73篇
  2000年   78篇
  1999年   46篇
  1998年   103篇
  1997年   67篇
  1996年   58篇
  1995年   58篇
  1994年   39篇
  1993年   39篇
  1992年   16篇
  1991年   24篇
  1990年   25篇
  1989年   20篇
  1988年   34篇
  1987年   32篇
  1986年   30篇
  1985年   28篇
  1984年   24篇
  1983年   15篇
  1982年   13篇
  1981年   17篇
  1979年   14篇
  1978年   10篇
  1977年   8篇
  1976年   8篇
  1975年   9篇
  1974年   9篇
排序方式: 共有6687条查询结果,搜索用时 15 毫秒
71.
Journal of Signal Processing Systems - Segmentation of thigh tissues (muscle, fat, inter-muscular adipose tissue (IMAT), bone, and bone marrow) from magnetic resonance imaging (MRI) scans is useful...  相似文献   
72.
Engineering with Computers - This work addresses a hybrid scheme for the numerical solutions of time fractional Tricomi and Keldysh type equations. In proposed methodology, Haar wavelets are used...  相似文献   
73.
Brain-computer interfaces (BCIs) records brain activity using electroencephalogram (EEG) headsets in the form of EEG signals; these signals can be recorded, processed and classified into different hand movements, which can be used to control other IoT devices. Classification of hand movements will be one step closer to applying these algorithms in real-life situations using EEG headsets. This paper uses different feature extraction techniques and sophisticated machine learning algorithms to classify hand movements from EEG brain signals to control prosthetic hands for amputated persons. To achieve good classification accuracy, denoising and feature extraction of EEG signals is a significant step. We saw a considerable increase in all the machine learning models when the moving average filter was applied to the raw EEG data. Feature extraction techniques like a fast fourier transform (FFT) and continuous wave transform (CWT) were used in this study; three types of features were extracted, i.e., FFT Features, CWT Coefficients and CWT scalogram images. We trained and compared different machine learning (ML) models like logistic regression, random forest, k-nearest neighbors (KNN), light gradient boosting machine (GBM) and XG boost on FFT and CWT features and deep learning (DL) models like VGG-16, DenseNet201 and ResNet50 trained on CWT scalogram images. XG Boost with FFT features gave the maximum accuracy of 88%.  相似文献   
74.
The performance prediction models in the Pavement-ME design software are nationally calibrated using in-service pavement material properties, pavement structure, climate and truck loadings, and performance data obtained from the Long-Term Pavement Performance programme. The nationally calibrated models may not perform well if the inputs and performance data used to calibrate those do not represent the local design and construction practices. Therefore, before implementing the new M-E design procedure, each state highway agency (SHA) should evaluate how well the nationally calibrated performance models predict the measured field performance. The local calibrations of the Pavement-ME performance models are recommended to improve the performance prediction capabilities to reflect the unique conditions and design practices. During the local calibration process, the traditional calibration techniques (split sampling) may not necessarily provide adequate results when limited number of pavement sections are available. Consequently, there is a need to employ statistical and resampling methodologies that are more efficient and robust for model calibrations given the data related challenges encountered by SHAs. The main objectives of the paper are to demonstrate the local calibration of rigid pavement performance models and compare the calibration results based on different resampling techniques. The bootstrap is a non-parametric and robust resampling technique for estimating standard errors and confidence intervals of a statistic. The main advantage of bootstrapping is that model parameters estimation is possible without making distribution assumptions. This paper presents the use of bootstrapping and jackknifing to locally calibrate the transverse cracking and IRI performance models for newly constructed and rehabilitated rigid pavements. The results of the calibration show that the standard error of estimate and bias are lower compared to the traditional sampling methods. In addition, the validation statistics are similar to that of the locally calibrated model, especially for the IRI model, which indicates robustness of the local model coefficients.  相似文献   
75.
76.
A growing trend within nanomedicine has been the fabrication of self‐delivering supramolecular nanomedicines containing a high and fixed drug content ensuring eco‐friendly conditions. This study reports on green synthesis of silica nanoparticles (Si‐NPs) using Azadirachta indica leaves extract as an effective chelating agent. X‐ray diffraction analysis and Fourier transform‐infra‐red spectroscopic examination were studied. Scanning electron microscopy analysis revealed that the average size of particles formed via plant extract as reducing agent without any surfactant is in the range of 100–170 nm while addition of cetyltrimethyl ammonium bromide were more uniform with 200 nm in size. Streptomycin as model drug was successfully loaded to green synthesised Si‐NPs, sustain release of the drug from this conjugate unit were examined. Prolong release pattern of the adsorbed drug ensure that Si‐NPs have great potential in nano‐drug delivery keeping the environment preferably biocompatible, future cytotoxic studies in this connection is helpful in achieving safe mode for nano‐drug delivery.Inspec keywords: silicon compounds, nanofabrication, nanomedicine, drug delivery systems, nanoparticles, X‐ray diffraction, Fourier transform infrared spectra, scanning electron microscopyOther keywords: nanosilica, streptomycin, nanoscale drug delivery, nanomedicine, silica nanoparticles, Azadirachta indica leaves extract, X‐ray diffraction analysis, Fourier transform‐infrared spectroscopy, scanning electron microscopy, cetyltrimethyl ammonium bromide, SiO2   相似文献   
77.
Electromagnetic wideband absorption is still perceived as a critical and formidable challenge to address with an unambiguous photonic absorber. Subwavelength metamaterial (MM) unit cells with unique and controlled features have recently gained considerable interest. However, meta-atoms, generated using a quantum-inspired pattern distribution, are underwhelming in existing literature to design photonic absorbers and their potential application to manufacture solar sails is still quite uncommon. In this article, to create a flexible, polarization-insensitive, ultrathin, and broadband MM absorber, quantum interference pattern-inspired design is utilized. Herein, a novel approach to fabricating solar sails for the space exploration incorporates the proposed broadband photonic absorber rather than conventional reflectors. The quantum-inspired meta-absorber (QIMA) exhibits an absorption of over 91% for the visible domain, i.e., 380–800 nm under a conventional plane-polarized source. It is shown in the study that broadband absorbers are almost equivalent to excellent reflectors to design the solar sails in terms of the time-averaged force calculated by utilizing the Maxwell stress tensor method. Thus, the QIMA has the potential to be a viable alternative to reflectors in the design of futuristic solar sails for space exploration. The interference theory model is also utilized to assure the dependability of calculated data, and additionally, the standard AM1.5 solar spectrum is utilized to demonstrate the QIMA's solar-harvesting potentiality.  相似文献   
78.
Accurate location or positioning of people and self-driven devices in large indoor environments has become an important necessity The application of increasingly automated self-operating moving transportation units, in large indoor spaces demands a precise knowledge of their positions. Technologies like WiFi and Bluetooth, despite their low-cost and availability, are sensitive to signal noise and fading effects. For these reasons, a hybrid approach, which uses two different signal sources, has proven to be more resilient and accurate for the positioning determination in indoor environments. Hence, this paper proposes an improved hybrid technique to implement a fingerprinting based indoor positioning, using Received Signal Strength information from available Wireless Local Area Network access points, together with the Wireless Sensor Networks technology. Six signals were recorded on a regular grid of anchor points, covering the research space. An optimization was performed by relative signal weighting, to minimize the average positioning error over the research space. The optimization process was conducted using a standard Quantum Particle Swarm Optimization, while the position error estimate for all given sets of weighted signals was performed using a Multilayer Perceptron (MLP) neural network. Compared to our previous research works, the MLP architecture was improved to three hidden layers and its learning parameters were finely tuned. These experimental results led to the 20% reduction of the positioning error when a suitable set of signal weights was calculated in the optimization process. Our final achieved value of 0.725 m of the location incertitude shows a sensible improvement compared to our previous results.  相似文献   
79.
One of the most pressing concerns for the consumer market is the detection of adulteration in meat products due to their preciousness. The rapid and accurate identification mechanism for lard adulteration in meat products is highly necessary, for developing a mechanism trusted by consumers and that can be used to make a definitive diagnosis. Fourier Transform Infrared Spectroscopy (FTIR) is used in this work to identify lard adulteration in cow, lamb, and chicken samples. A simplified extraction method was implied to obtain the lipids from pure and adulterated meat. Adulterated samples were obtained by mixing lard with chicken, lamb, and beef with different concentrations (10%–50% v/v). Principal component analysis (PCA) and partial least square (PLS) were used to develop a calibration model at 800–3500 cm−1. Three-dimension PCA was successfully used by dividing the spectrum in three regions to classify lard meat adulteration in chicken, lamb, and beef samples. The corresponding FTIR peaks for the lard have been observed at 1159.6, 1743.4, 2853.1, and 2922.5 cm−1, which differentiate chicken, lamb, and beef samples. The wavenumbers offer the highest determination coefficient R2 value of 0.846 and lowest root mean square error of calibration (RMSEC) and root mean square error prediction (RMSEP) with an accuracy of 84.6%. Even the tiniest fat adulteration up to 10% can be reliably discovered using this methodology.  相似文献   
80.
Detection of rapidly evolving malware requires classification techniques that can effectively and efficiently detect zero-day attacks. Such detection is based on a robust model of benign behavior and deviations from that model are used to detect malicious behavior. In this paper we propose a low-complexity host-based technique that uses deviations in static file attributes to detect malicious executables. We first develop simple statistical models of static file attributes derived from the empirical data of thousands of benign executables. Deviations among the attribute models of benign and malware executables are then quantified using information-theoretic (Kullback-Leibler-based) divergence measures. This quantification reveals distinguishing attributes that are considerably divergent between benign and malware executables and therefore can be used for detection. We use the benign models of divergent attributes in cross-correlation and log-likelihood frameworks to classify malicious executables. Our results, using over 4,000 malicious file samples, indicate that the proposed detector provides reasonably high detection accuracy, while having significantly lower complexity than existing detectors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号