首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52528篇
  免费   4842篇
  国内免费   2136篇
电工技术   2854篇
技术理论   7篇
综合类   3228篇
化学工业   9177篇
金属工艺   3048篇
机械仪表   3390篇
建筑科学   3567篇
矿业工程   1592篇
能源动力   1674篇
轻工业   3321篇
水利工程   776篇
石油天然气   3149篇
武器工业   463篇
无线电   6405篇
一般工业技术   7105篇
冶金工业   2514篇
原子能技术   720篇
自动化技术   6516篇
  2024年   259篇
  2023年   943篇
  2022年   1588篇
  2021年   2242篇
  2020年   1716篇
  2019年   1469篇
  2018年   1647篇
  2017年   1912篇
  2016年   1729篇
  2015年   2202篇
  2014年   2818篇
  2013年   3365篇
  2012年   3523篇
  2011年   3800篇
  2010年   3153篇
  2009年   3003篇
  2008年   2990篇
  2007年   2798篇
  2006年   2700篇
  2005年   2301篇
  2004年   1627篇
  2003年   1431篇
  2002年   1400篇
  2001年   1207篇
  2000年   1196篇
  1999年   1215篇
  1998年   1004篇
  1997年   838篇
  1996年   778篇
  1995年   595篇
  1994年   510篇
  1993年   341篇
  1992年   273篇
  1991年   205篇
  1990年   173篇
  1989年   138篇
  1988年   115篇
  1987年   64篇
  1986年   66篇
  1985年   37篇
  1984年   31篇
  1983年   31篇
  1982年   24篇
  1981年   15篇
  1980年   10篇
  1979年   6篇
  1976年   6篇
  1973年   2篇
  1970年   2篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
High performance flexible batteries are essential ingredients for flexible devices. However, general isolated flexible batteries face critical challenges in developing multifunctional embodied energy systems, owing to the lack of integrative design. Herein, inspired by scales in creatures, overlapping flexible lithium-ion batteries (FLIBs) consisting of energy storage scales and connections using LiNi0.5Co0.2Mn0.3O2 (NCM523) and graphite electrodes are presented. The scale-dermis structure ensures a high energy density of 374.4 Wh L−1 as well as a high capacity retention of 93.2% after 200 charge/discharge cycles and 40 000 bending times. A variable stiffness property is revealed that can be controlled by battery configurations and deformation modes. Furthermore, the overlapping FLIBs can be housed directly into the architecture of several flexible devices, such as robots and grippers, allowing to create multifunctionalities that go far beyond energy storage and include load-bearing and variable flexibility. This study broadens the versatility of FLIBs toward energy storage structure engineering of flexible devices.  相似文献   
992.
Growth and characterization of metal-oxide thin films foster successful development of oxide-material-integrated thin-film devices represented by metal-oxide-semiconductor field-effect transistors (MOSFET), drawing enormous technological and scientific interest for several decades. In recent years, functional oxide heterostructures have demonstrated remarkable achievements in modern technologies and provided deeper insights into condensed-matter physics and materials science owing to their versatile tunability and selective amplification of the functionalities. One of the most critical aspects of their physical properties is the polar perturbation stemming from the ionic framework of an oxide. By engineering and exploiting the structural, electrical, magnetic, and optical characteristics through various routes, numerous perceptive studies have clearly shown how polar perturbations advance functionalities or drive exotic physical phenomena in complex oxide heterostructures. In this review, both intrinsic (engraved by thin-film heteroepitaxy) and extrinsic (reversibly controllable defect-mediated disorder and polar adsorbates) elements of polar perturbations, highlighting their abilities for the development of highly tunable functional properties are summarized. Scientifically, the recent approaches of polar perturbations render one to consolidate a prospect of atomic-level manipulation of polar order in epitaxial oxide thin films. Technologically, this review also offers useful guidelines for rational design to heterogeneously integrated oxide-based multi-functional devices with high performances.  相似文献   
993.
The electron transport layer (ETL) is a critical component in achieving high device performance and stability in organic solar cells. Conjugated polyelectrolytes (CPEs) have become an attractive alternative due to film-forming properties and ease of preparation. However, p-type CPEs generally exhibit poor charge mobility and conductivity, incorporation of electron-withdrawing units forming alternated D-A conjugated backbone can make up for these deficiencies. Herein, the ratio of electron withdrawing moieties are further increased and two poly(A1-alt-A2) typed PIIDNDI-Br and PDPPNDI-Br based on the combination of naphthalene diimide (NDI) with isoindigo (IID) or diketopyrrolopyrrole (DPP) via direct arylation polycondensation are synthesized. These CPEs possess excellent alcohol solubility, a suitable lowest unocuppied molecular orbital energy level, and work function tunability. Surprisingly, the incorporation of IID and DPP units generate distinct self-doping behaviors, which are confirmed by UV–vis absorption and ESR spectra. However, no matter doped or undoped, both CPEs present better charge-transporting properties and conductivity when utilized as ETLs. The PIIDNDI-Br and PDPPNDI-Br display good universal compatibility with the blend of PM6:Y6 and PM6:L8-BO, and PCEs of 18.32% and 18.36% are obtained, respectively, which also present excellent storage stability. In short, the combination of two different acceptors demonstrates an efficient strategy to design highly efficient ETLs for high performance photovoltaic devices.  相似文献   
994.
Metal nanoclusters (MNCs) are compositionally well-defined and also structurally precise materials with unique molecule-like properties and discrete electronic energy levels. Atomically precise ligand-protected Cu nanoclusters (LP-CuNCs) are one category of typical MNCs that usually demonstrate unique geometric and electronic structures to serve as electrocatalysts. However, the synthesis, application, as well as structure-performance relationship of LP-CuNCs are not adequately studied. Significantly, the ligands are essential to the geometric structure, crystal structure, size, and electronic structure of LP-CuNCs, which determine their physiochemical properties and applications. In this review, significant progress in the ligand design of LP-CuNCs, and their application in electrocatalytic reactions is introduced. The general basics of ligand-protected MNCs (LP-MNCs) are first introduced and the functions of ligands are emphasized. Subsequently, a series of different ligands for LP-CuNCs including thiolates, phosphines, alkynyl, polymers, and biomolecules are highlighted. Thereafter, their applications in different electrocatalytic reactions are discussed. It is believed that this review will not only inspire the design and synthesis of novel LP-CuNCs, but also contribute to the extension of their applications in electrocatalytic reactions and the establishment of accurate structure-performance relationships.  相似文献   
995.
Polydimethylsiloxanes (PDMS) foam as one of next-generation polymer foam materials shows poor surface adhesion and limited functionality, which greatly restricts its potential applications. Fabrication of advanced PDMS foam materials with multiple functionalities remains a critical challenge. In this study, unprecedented self-adhesive PDMS foam materials are reported with worm-like rough structure and reactive groups for fabricating multifunctional PDMS foam nanocomposites decorated with MXene/cellulose nanofiber (MXene/CNF) interconnected network by a facile silicone foaming and dip-coating strategy followed by silane surface modification. Interestingly, such self-adhesive PDMS foam produces strong interfacial adhesion with the hybrid MXene/CNF nano-coatings. Consequently, the optimized PDMS foam nanocomposites have excellent surface super-hydrophobicity (water contact angle of ≈159o), tunable electrical conductivity (from 10−8 to 10 S m−1), stable compressive cyclic reliability in both wide-temperature range (from −20 to 200 oC) and complex environments (acid, sodium, and alkali conditions), outstanding flame resistance (LOI value of >27% and low smoke production rate), good thermal insulating performance and reliable strain sensing in various stress modes and complex environmental conditions. It provides a new route for the rational design and development of advanced PDMS foam nanocomposites with versatile multifunctionalities for various promising applications such as intelligent healthcare monitoring and fire-safe thermal insulation.  相似文献   
996.
MXene aerogels have shown great potential for many important functional applications, in particular electromagnetic interference (EMI) shielding. However, it has been a grand challenge to create mechanically hyperelastic, air-stable, and durable MXene aerogels for enabling effective EMI protection at low concentrations due to the difficulties in achieving tailorable porous structures, excellent mechanical elasticity, and desired antioxidation capabilities of MXene in air. Here, a facile strategy for fabricating MXene composite aerogels by co-assembling MXene and cellulose nanofibers during freeze-drying followed by surface encapsulation with fire-retardant thermoplastic polyurethane (TPU) is reported. Because of the maximum utilization of pore structures of MXene, and conductive loss enhanced by multiple internal reflections, as-prepared aerogel with 3.14 wt% of MXene exhibits an exceptionally high EMI shielding effectiveness of 93.5 dB, and an ultra-high MXene utilization efficiency of 2977.71 dB g g−1, tripling the values in previous works. Owing to the presence of multiple hydrogen bonding and the TPU elastomer, the aerogel exhibits a hyperelastic feature with additional strength, excellent stability, superior durability, and high fire safety. This study provides a facile strategy for creating multifunctional aerogels with great potential for applications in EMI protection, wearable devices, thermal management, pressure sensing, and intelligent fire monitoring.  相似文献   
997.
Degenerative disc disease (DDD) has become a significant public health issue worldwide. This can result in loss of spinal function affecting patient health and quality of life. Artificial total disc replacement (A-TDR) is an effective approach for treating symptomatic DDD that compensates for lost functionality and helps patients perform daily activities. However, because current A-TDR devices lack the unique structure and material characteristics of natural intervertebral discs (IVDs), they fail to replicate the multidirectional stiffness needed to match physiological motions and characterize anisotropic behavior. It is still unclear how the multidirectional stiffness of the disc is affected by structural parameters and material characteristics. Herein, a bioinspired intervertebral disc (BIVD-L) based on a representative human lumbar segment is developed. The proposed BIVD-L reproduces the multidirectional stiffness needed for the most common physiological kinematic behaviors. The results demonstrate that the multidirectional stiffness of the BIVD-L can be regulated by structural and material parameters. The results of this research deepen knowledge of the biomechanical behavior of the human lumbar disc and may provide new inspirations for the design and fabrication of A-TDR devices for both engineering and functional applications.  相似文献   
998.
Advancing hole transport layers (HTL) to realize large-area, flexible, and high-performance perovskite solar cells (PSCs) is one of the most challenging issues for its commercialization. Here, a self-assembled gradient Ti3C2Tx MXene incorporated PEDOT:PSS HTL is demonstrated to achieve high-performance large-area PSCs by establishing half-caramelization-based glucose-induced MXene redistribution. Through this process, the Ti3C2Tx MXene nanosheets are spontaneously dispersed and redistributed at the top region of HTL to form the unique gradient distribution structure composed of MXene:Glucose:PEDOT:PSS (MG-PEDOT). These results show that the MG-PEDOT HTL not only offers favorable energy level alignment and efficient charge extraction, but also improves the film quality of perovskite layer featuring enlarged grain size, lower trap density, and longer carrier lifetime. Consequently, the power conversion efficiency (PCE) of the flexible device based on MG-PEDOT HTL is increased by 36% compared to that of pristine PEDOT:PSS HTL. Meanwhile, the flexible perovskite solar minimodule (15 cm2 area) using MG-PEDOT HTL achieve a PCE of 17.06%. The encapsulated modules show remarkable long-term storage stability at 85 °C in ambient air (≈90% efficiency retention after 1200 h) and enhanced operational lifetime (≈90% efficiency retention after 200 h). This new approach shows a promising future of the self-assembled HTLs for developing optoelectronic devices.  相似文献   
999.
Liquid crystalline polymers (LCPs), especially liquid crystalline elastomers (LCEs) can generate ultrahigh shape change amplitude but has lower mechanical strength. Although some attempts have been tried to improve the mechanical performance of LCE, there are still limitations including complicated fabrication and high actuation temperature. Here, a versatile method is reported to fabricate light-driven actuator by covalently cross-linking polyurethane (PU) into LCP networks (PULCN). This new scheme is distinct from the previous interpenetrating network strategy, the hydrogen bonds and covalent bonds are used in this study to improve the miscibility of non-liquid-crystalline PU and LCP materials and enhance the stability of the composite system. This material not only possesses the shape memory properties of PU but shows shape-changing behavior of LCPs. With a shrinkage ratio of 20% at the phase transition temperature, the prepared materials reached a maximum mechanical strength of 20 MPa, higher than conventional LCP. Meanwhile, the resulting film shows diverse and programmable initial shapes by constructing crosslinking density gradient across the thickness of the film. By integration of PULCN with near-infrared light-responsive polydopamine, local and sequential light control is achieved. This study may provide a new route for the fabrication of programmable and mechanically robust light-driven soft actuator.  相似文献   
1000.
Cobalt phthalocyanine (CoPc) anchored on heterogeneous scaffold has drawn great attention as promising electrocatalyst for carbon dioxide reduction reaction (CO2RR), but the molecule/substrate interaction is still pending for clarification and optimization to maximize the reaction kinetics. Herein, a CO2RR catalyst is fabricated by affixing CoPc onto the Mg(OH)2 substrate primed with conductive carbon, demonstrating an ultra-low overpotential of 0.31 ± 0.03 V at 100 mA cm−2 and high faradaic efficiency of >95% at a wide current density range for CO production, as well as a heavy-duty operation at 100 mA cm−2 for more than 50 h in a membrane electrode assembly. Mechanistic investigations employing in situ Raman and attenuated total reflection surface-enhanced infrared absorption spectroscopy unravel that Mg(OH)2 plays a pivotal role to enhance the CO2RR kinetics by facilitating the first-step electron transfer to form anionic *CO2 intermediates. DFT calculations further elucidate that introducing Lewis acid sites help to polarize CO2 molecules absorbed at the metal centers of CoPc and consequently lower the activation barrier. This work signifies the tailoring of catalyst-support interface at molecular level for enhancing the turnover rate of CO2RR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号