首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   9篇
  国内免费   4篇
化学工业   33篇
金属工艺   3篇
机械仪表   4篇
建筑科学   4篇
能源动力   12篇
轻工业   19篇
水利工程   2篇
石油天然气   3篇
无线电   34篇
一般工业技术   43篇
冶金工业   18篇
原子能技术   2篇
自动化技术   16篇
  2023年   4篇
  2022年   6篇
  2021年   23篇
  2020年   12篇
  2019年   8篇
  2018年   13篇
  2017年   9篇
  2016年   21篇
  2015年   5篇
  2014年   6篇
  2013年   8篇
  2012年   4篇
  2011年   6篇
  2010年   8篇
  2009年   5篇
  2008年   6篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1993年   3篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1984年   1篇
  1976年   1篇
排序方式: 共有193条查询结果,搜索用时 437 毫秒
41.
With the rising demand for data access, network service providers face the challenge of growing their capital and operating costs while at the same time enhancing network capacity and meeting the increased demand for access. To increase efficacy of Software Defined Network (SDN) and Network Function Virtualization (NFV) framework, we need to eradicate network security configuration errors that may create vulnerabilities to affect overall efficiency, reduce network performance, and increase maintenance cost. The existing frameworks lack in security, and computer systems face few abnormalities, which prompts the need for different recognition and mitigation methods to keep the system in the operational state proactively. The fundamental concept behind SDN-NFV is the encroachment from specific resource execution to the programming-based structure. This research is around the combination of SDN and NFV for rational decision making to control and monitor traffic in the virtualized environment. The combination is often seen as an extra burden in terms of resources usage in a heterogeneous network environment, but as well as it provides the solution for critical problems specially regarding massive network traffic issues. The attacks have been expanding step by step; therefore, it is hard to recognize and protect by conventional methods. To overcome these issues, there must be an autonomous system to recognize and characterize the network traffic’s abnormal conduct if there is any. Only four types of assaults, including HTTP Flood, UDP Flood, Smurf Flood, and SiDDoS Flood, are considered in the identified dataset, to optimize the stability of the SDN-NFV environment and security management, through several machine learning based characterization techniques like Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Logistic Regression (LR) and Isolation Forest (IF). Python is used for simulation purposes, including several valuable utilities like the mine package, the open-source Python ML libraries Scikit-learn, NumPy, SciPy, Matplotlib. Few Flood assaults and Structured Query Language (SQL) injections anomalies are validated and effectively-identified through the anticipated procedure. The classification results are promising and show that overall accuracy lies between 87% to 95% for SVM, LR, KNN, and IF classifiers in the scrutiny of traffic, whether the network traffic is normal or anomalous in the SDN-NFV environment.  相似文献   
42.
One dimensional (1D) nanostructures and its derivatives can be manipulated to serve special functions like hollow structure, and higher surface area. 1D TiO2 nanotube-in-nanofibers (NF@NT) are developed through triaxial electrospinning followed by a calcination process. A blended solution of polyvinyl pyrrolidone and tetra-butyl titanate is used in outer and inner layers of nanofibers, respectively, while paraffin oil is used in the middle layer. The optimized triaxial nanofibers of 669.4 ± 52.43 nm are developed at 7.5 w/w% concentration, 28 kV applied voltage, and 24 cm spinning distance. TiO2 NF@NT structure is obtained through calcination of optimized triaxial nanofibers at 550°C. Subsequently, the morphology of TiO2 NF@NT and its uniform diameter distribution is confirmed through scanning electron microscopy. Fourier-transform infrared spectroscopy results indicates the formation of TiO2 NF@NT. X-Rays diffraction pattern peaks also reveals the presence of both anatase and rutile crystalline phases. The presence of only titanium (Ti) and oxygen (O) elements in the TiO2 NF@NT is confirmed through energy dispersive X-ray spectroscopy. Brunauer–Emmett–Teller analysis indicates that TiO2 NF@NT has a higher specific surface area of ~141.68 m2/g compared with the solid TiO2 nanofiber (~75.31 m2/g). This study can be adopted to develop TiO2 NF@NT for wide range of application.  相似文献   
43.
Wireless Personal Communications - IEEE WLAN 802.11 uses a contention-based medium access control protocol. Adjacent WLAN access points (APs) and stations (STAs) sharing the same channels causes...  相似文献   
44.
Normal metal, ohmic contacts to high-temperature superconductor (HTSC) materials will be used to form via structures between HTSC interconnect levels, and also, substrate bonding pads in a superconducting multichip module (SMCM). Specific contact resistivities below 10−8 Ω cm2 will be required for such contacts to control signal attenuation and local contact heating of the LN2cooled SMCM. Previous work on normal metal/superconducting contacts has not focused on metallization schemes which will be stable during subsequent high-temperature processing. Metal contacts of gold, silver, and palladium were formed on superconducting thin films of YBa2Cu3O7-δ via evaporation and sputtering through a shadow mask followed by annealing in various ambients and at several temperatures. Palladium contacts oxidized readily during anneal, and sputtered gold contacts required additional processing and exhibited higher specific contact resistivities. The best contacts were obtained by a controlled-cooling oxygen anneal of evaporated gold or silver, as indicated by normal-state specific contact resistivities of 3 × 10−5 Ω cm2 and 4 × 10−5 Ω cm2, respectively. This work differs from previously published results by describing contacts which required no extensive preparation of the HTSC surface and were stable to 700 °C, indicating these contacts would be compatible with subsequent high-temperature processing of the additional HTSC layers required in a multi-level SMCM.  相似文献   
45.
Development of injectable, long‐lasting, contraceptive drug delivery formulations, and implants are highly desired to avoid unplanned pregnancies while improving patient compliance and reducing adverse side effects and treatment costs. The present study reports on the fabrication and characterization of two levonorgestrel (LNG) microsphere injectable formulations. Poly(?‐caprolactone) (PCL) with 12.5% and 24% (w/w) LNG were fabricated into microspheres, measuring 300 ± 125 µm, via the oil‐in‐water (o/w) emulsion solvent evaporation technique. Formulations showed sustained drug release up to 120 days. FTIR, XRD, DSC, and TGA confirmed the absence of LNG chemical interaction with PCL as well as its molecular level distribution. The in vitro release of LNG was calculated to be Fickian diffusion controlled and properly characterized. The inclusion of multiple elevated release temperatures allowed for the application of the Arrhenius model to calculate drug release constants and representative sampling intervals, demonstrating the use of elevated temperatures for accelerated‐time drug release studies. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46068.  相似文献   
46.
Poly(N-isopropylacrylamide-acrylamide-methacrylic acid) [p(NIPa-AAm-Ma)] polymer microgels were prepared by free radical precipitation polymerization method. AgNPs were fabricated in the sieves of polymer network by chemical reduction using AgNO3 salt as a precursor of silver ions. Various techniques like dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transform infrared microscopy (FTIR), and UV-Visible spectroscopy were used for characterization of pure and composite microgels. The diameter of AgNPs fabricated in polymeric network was found to be in the range of 10-15 nm. Stimuli responsive behavior of hybrid microgels was same as that of pure microgels. Catalytic efficiency of the hybrid microgels was investigated by reducing 4-Nitroaniline (4-NA) into 4-Aminoaniline (4-AA) using NaBH4 as reducing agent under different conditions of temperature of the medium, concentration of reducing agent, 4-Nitroaniline and hybrid microgels to explore the catalysis process. Kinetic and thermodynamic aspects of reduction of 4-Nitroaniline in the presence of catalyst were also discussed on the basis of values of Arrhenius and Eyring parameters like pre-exponential factor, activation energy, enthalpy of activation and entropy of activation. Catalytic activity of the hybrid microgels was found to be thermally tunable in the temperature range of 25-70 oC. The value of rate constant (k app ) for reduction of 4-NA was minimum at 55 °C, which can be attributed to volume phase transition of the hybrid microgels.  相似文献   
47.
Ni doped Cr2O3 (NCO) films have attracted much attention due to their applications in the field of photovoltaics. This study reports the tailoring of structural, electrical and optical properties as a function of Ni doping in Chromium oxide (Cr2O3). NCO thin films were grown by Pulsed laser deposition (PLD) using 2nd harmonic Nd:YAG Laser on n-Si (100) with in-situ annealing of 450?°C. Structural analyses based on X-ray diffractometry (XRD) and Raman Spectroscopy showed the inconsistent variation in crystallinity and shift in A1g band in turn revealing the successful incorporation of Ni into Chromium oxide host lattice. In addition, electrical measurements also showed an inconsistent variation in resistivity ranging from 102 to 104Ω?cm. The properties showed widening of band gap energy (Eg) from 3.41 to 3.60?eV as a function of Ni doping concentration with significantly decreased reflectance in the range of 500–600?nm thereby increasing the absorption, a pre-requisite for solar absorbers.  相似文献   
48.
Wireless Personal Communications - The digital transmission amongst vehicles and roadway equipment is necessary for the realization of smart transportation systems. Vehicular ad-hoc network (VANet)...  相似文献   
49.
50.
Experimental data are reported on poly(lactic acid) (PLA) in tensile loading–unloading tests and relaxation tests under stretching and retraction at temperatures ranging from room temperature up to 50°C. Two characteristic features of the time‐dependent response of PLA are revealed: (i) with a decrease in minimum stress under retraction at a fixed temperature, relaxation curves change their shape from monotonically decaying with time (simple relaxation), to non‐monotonic (mixed relaxation) to monotonically increasing (inverse relaxation) and (ii) with an increase in temperature, inverse relaxation after unloading down to the zero stress evolves into mixed relaxation with a pronounced shift of the peak position to smaller relaxation times. Constitutive equations are derived for the mechanical behavior of PLA, and adjustable parameters in the stress–strain relations are found by fitting the observations. Ability of the model to predict the time‐dependent response under cyclic deformation is confirmed by numerical simulation. POLYM. ENG. SCI., 57:239–247, 2017. © 2016 Society of Plastics Engineers  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号