首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   811篇
  免费   39篇
  国内免费   3篇
电工技术   43篇
化学工业   281篇
金属工艺   18篇
机械仪表   18篇
建筑科学   14篇
能源动力   57篇
轻工业   77篇
水利工程   4篇
石油天然气   2篇
无线电   44篇
一般工业技术   167篇
冶金工业   27篇
原子能技术   32篇
自动化技术   69篇
  2024年   2篇
  2023年   10篇
  2022年   25篇
  2021年   33篇
  2020年   17篇
  2019年   25篇
  2018年   27篇
  2017年   27篇
  2016年   35篇
  2015年   19篇
  2014年   49篇
  2013年   73篇
  2012年   67篇
  2011年   60篇
  2010年   49篇
  2009年   51篇
  2008年   53篇
  2007年   37篇
  2006年   34篇
  2005年   25篇
  2004年   21篇
  2003年   27篇
  2002年   16篇
  2001年   11篇
  2000年   11篇
  1999年   4篇
  1998年   3篇
  1997年   5篇
  1996年   8篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1987年   3篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1977年   1篇
排序方式: 共有853条查询结果,搜索用时 15 毫秒
91.
Here we demonstrate that the incorporation of boron (B) atoms between double-walled carbon nanotubes (DWNTs) during thermal annealing (1400-1600 degrees C) results in covalent nanotube "Y" junctions, DWNT coalescence, and the formation of flattened multiwalled carbon nanotubes (MWNTs). These processes occur via the merging of adjacent tubes, which is triggered by B interstitial atoms. We observe that B atom interstitials between DWNTs are responsible for the rapid establishment of covalent connections between neighboring tubes (polymerization), thereby resulting in the fast annealing of the carbon cylinders with B atoms embedded in the newly created carbon nanotube network. Once B is in the lattice, tube faceting (polygonization) starts to occur, and the electronic properties are expected to change dramatically. Therefore, B atoms indeed act as atomic nanotube fusers (or welders), and this process could now be used in assembling novel electronic nanotube devices, nanotube networks, carbon nanofoams and heterojunctions exhibiting p-type electronic properties.  相似文献   
92.
93.
A two-step electrodischarge machining method was proposed for fabricating microgrooves with varied cross-sections on hard materials. Firstly, tungsten tool electrodes were shaped by wire electrodischarge grinding, and then the resulting tool electrodes were used to electrodischarge machine microgrooves on stainless steel. Preliminary experimental results showed that, in the first step, a sharp tool electrode with surface roughness of 0.3 µmRa could be achieved, and the surface roughness of the resulting groove was 0.16 µmRa in the second step. Voltage strongly affects the machining speed. A high voltage (>70 V) was preferable for improving the material removal rate. However, significant tool wear took place when using a high condenser capacitance at high voltages. To suppress tool wear, a high voltage and a small capacitance should be used. As test pieces, microgrooves having rectangular, triangular, circular and semi-closed cross-sections were fabricated.  相似文献   
94.
The use of zinc oxide (ZnO) nanoparticles as ultraviolet (UV) absorbers for many organic substrates is limited because of the high photocatalytic activity of ZnO. In this study, a facile and efficient technique for the preparation of a hybrid material of silica-coated ZnO nanoparticles was used to reduce the photocatalytic activity of ZnO. Monodispersed ZnO nanopartcles were prepared by wet chemistry and the particle surface was modified by tetraethylorthosilicate to form a silica coating via the Stöber method. ZnO samples, both before and after the coating process, were investigated by transmission electron microscopy, X-ray diffraction, dynamic light scanning, infrared, and UV-Vis absorption spectroscopy. The effect of the surface modification on the photocatalytic activity of ZnO was studied by monitoring the degradation of Rhodamine B caused by photo-generated free radicals. The results implied that the photo-generation of free-radicals was strongly quenched by the presence of silica on the particle surface.  相似文献   
95.
If both EVs (Electric Vehicles, includes plug‐in hybrid electric vehicles) and renewable energies spread in large quantities, it is possible to control the supply fluctuation of renewable energies using the storage battery of EVs. This research sought to show the charge load potential of EVs based on the state of the Japanese passenger car using traffic census results, etc. Furthermore, it tried to show the trend of the storage battery capacity according to time. From the estimated results: (1) the charge electricity of low and middle distance gets a majority of the total charge demand, (2) charge load changes according to time several times, and the minimum load is the number of gigawatt‐hours at early morning, (3) if night charge is assumed, the standby charge demand of noon will reach tens of gigawatt‐hours, it may have sufficient scale for supply fluctuation control of PVs. Although the present EV is not suitable for long‐distance running, these are expected to be 30 or less percent of the total charge demand. The estimated storage capacity potential in this research will not change numbers of times. © 2012 Wiley Periodicals, Inc. Electr Eng Jpn, 182(3): 30–38, 2013; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.22352  相似文献   
96.
97.
Barium titanate (BaTiO3) crystallites with various particle sizes from 22 to 500 nm were prepared by the two-step thermal decomposition method of barium titanyl oxalate. Various characterizations revealed that these particles were impurity-free, defect-free, dense BaTiO3 particles. The powder dielectric measurement clarified that the dielectric constant of BaTiO3 particles with a size of around 58 nm exhibited a maximum of over 15,000. To explain this size dependence, the THz region dielectric properties of BaTiO3 fine particles, especially Slater mode frequency, were measured using the far infrared (FIR) reflection method. As the result, the lowest Slater mode frequency was obtained at 58 nm. This tendency was completely consistent with particle size dependence of the dielectric constant.  相似文献   
98.
This study examined the rupture mechanisms of an orthogonal 3D woven SiC fiber/BN interface/SiC matrix composite under combination of constant and cyclic tensile loading at elevated temperature in air. Monotonic tensile testing, constant tensile load testing, and tension–tension fatigue testing were conducted at 1100 °C. A rectangular waveform was used for fatigue testing to assess effects of unloading on the damage and failure behavior. Microscopic observation and single-fiber push-out tests were conducted to reveal the rupture mechanisms. Results show that both oxidative matrix crack propagation attributable to oxidation of the fiber–matrix interface and the decrease in the interfacial shear stress (IFSS) at the fiber–matrix interface significantly affect the lifetime of the SiC/SiC composites. A rupture strength degradation model was proposed using the combination of the oxidative matrix crack growth model and the IFSS degradation model. The prediction roughly agreed with the experimentally obtained results.  相似文献   
99.
SiC-fiber–reinforced binary Si eutectic alloy composites have been developed for aerospace applications using the melt infiltration method. In this study, the oxidation mechanisms of various binary Si eutectic alloys were evaluated at elevated temperatures. We suggest that the oxidation resistance of eutectic alloys could be predicted using the Gibbs energy change for the oxidation reaction. Based on these calculations, eutectic alloys of Si-16at%Ti, Si-17at%Cr, Si-22at%Co, Si-38at%Co, and Si-27at%Fe were prepared. These alloys produced uniform SiO2 layers and showed the same oxidation resistance as Si at 1000°C under humid conditions. Therefore, SiC composites using Si alloys with excellent oxidation resistance can be predicted using thermodynamic calculations.  相似文献   
100.
Germanene, a 2D honeycomb germanium crystal, is grown at graphene/Ag(111) and hexagonal boron nitride (h-BN)/Ag(111) interfaces by segregating germanium atoms. A simple annealing process in N2 or H2/Ar at ambient pressure leads to the formation of germanene, indicating that an ultrahigh-vacuum condition is not necessary. The grown germanene is stable in air and uniform over the entire area covered with a van der Waals (vdW) material. As an important finding, it is necessary to use a vdW material as a cap layer for the present germanene growth method since the use of an Al2O3 cap layer results in no germanene formation. The present study also proves that Raman spectroscopy in air is a powerful tool for characterizing germanene at the interfaces, which is concluded by multiple analyses including first-principles density functional theory calculations. The direct growth of h-BN-capped germanene on Ag(111), which is demonstrated in the present study, is considered to be a promising technique for the fabrication of future germanene-based electronic devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号