首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   0篇
化学工业   5篇
能源动力   16篇
无线电   7篇
一般工业技术   25篇
冶金工业   1篇
自动化技术   15篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2016年   5篇
  2013年   9篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2005年   2篇
  2004年   7篇
  2003年   3篇
  2001年   4篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   4篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
51.

In an attempt to address the huge data demand of indoor mobile users and poor signal strength from outdoor base stations to indoor environments, opertaors have started deploying variety of small cells likes Femtos, picos and micro cells. In this work, we used Femtos as small cells. Femto cells are low-cost, low-power consuming cellular base stations which operate only in licensed spectrum and are designed for both outdoor and indoor communication. Although small cells can be used for enhancing network capacity and coverage, arbitrary deployment of large number of small cells can lead to increase in operators expenditure and may create severe interference issues for cell edge users. In this paper, we look into optimal placement of small cell solutions to improve data rates of users in LTE HetNets using Femtos. Besides, these solutions address the main concerns of interference and resource management by proposing mechanisms for optimal placement of Femtos (OptFP, MinNF), dynamic power control and bandwidth allocation in Femtos (SOPC) and dynamic offloading. We provide a comparison of placement solutions and the applicability of each proposal keeping the operators’ revenue in mind.

  相似文献   
52.
53.
Neuroblastoma (NB) tumor substantially contributes to childhood cancer mortality. The design of novel drugs targeted to specific molecular alterations becomes mandatory, especially for high‐risk patients burdened by chemoresistant relapse. The dysregulated expression of MYCN, ALK, and LIN28B and the diminished levels of miR‐34a and let‐7b are oncogenic in NB. Due to the ability of miRNA‐mimics to recover the tumor suppression functions of miRNAs underexpressed into cancer cells, safe and efficient nanocarriers selectively targeted to NB cells and tested in clinically relevant mouse models are developed. The technology exploits the nucleic acids negative charges to build coated‐cationic liposomes, then functionalized with antibodies against GD2 receptor. The replenishment of miR‐34a and let‐7b by NB‐targeted nanoparticles, individually and more powerfully in combination, significantly reduces cell division, proliferation, neoangiogenesis, tumor growth and burden, and induces apoptosis in orthotopic xenografts and improves mice survival in pseudometastatic models. These functional effects highlight a cooperative down‐modulation of MYCN and its down‐stream targets, ALK and LIN28B, exerted by miR‐34a and let‐7b that reactivate regulatory networks leading to a favorable therapeutic response. These findings demonstrate a promising therapeutic efficacy of miR‐34a and let‐7b combined replacement and support its clinical application as adjuvant therapy for high‐risk NB patients.  相似文献   
54.
Within the total energy framework which we introduce here for the first time (in contrast to Lagrangian or Hamiltonian mechanics framework), we provide an alternative and have developed in this paper a general numerical discretization for continuum-elastodynamics directly stemming from Hamilton’s law of varying action (HLVA) involving a measurable built-in scalar function, namely, Total Energy ${[{\mathcal{E}}\left({{\boldsymbol{q}},\dot{{\boldsymbol{q}}}}\right): TQ\rightarrow {\mathbb{R}}]}$ . The Total Energy we use herein for enabling the space discretization is defined as the kinetic energy plus the potential energy for N-body systems, and the kinetic energy plus the total potential energy for continuum-body systems. It thereby provides a direct measure and sound physical interpretation naturally, while enabling this framework to permit general numerical discretizations such as with finite elements. In the variational formulation proposed here, we place particular emphasis upon the notion that the scalar function which represents the autonomous total energy of the continuum/N-body dynamical systems can be a crucial mathematical function and physical quantity which is a constant of motion in conservative systems. In addition, we prove that the autonomous total energy possesses the three invariant properties and can be viewed as the so-called total energy version of Noether’s theorem; therefore, the autonomous total energy has time/translational/rotational symmetries for the continuum/N-body dynamical systems. The proposed concepts directly emanating from HLVA inherently involving the scalar function, namely, total energy: (i) can be shown to yield the same governing mathematical model equations of motion that are continuous in space and time together with the natural boundary conditions just as Hamilton’s principle (HP) is routinely used to derive such equations, but without obvious inconsistency via such a principle as explained in the paper; (ii) explain naturally the Bubnov–Galerkin weighted-residual form that is customarily employed for discretization for both space and time, and alternately, (iii) circumvent relying on traditional practices of conducting numerical discretizations starting either from the balance of linear momentum (Newton’s second law) involving Cauchy’s equations of motion (governing equations) arising from continuum mechanics or via (i) and (ii) above if one chooses this option, and instead provides new avenues of discretization for continuum-dynamical systems. The present developments naturally embody the weak form in space and time that can be described by a discrete Total Energy Differential Operator (TEDO). Thereby, a novel yet simple, space-discrete Total Energy formulation proposed here only needs to employ the discrete TEDO which provides new avenues and directly yields the semi-discrete ordinary differential equations in time which can be readily shown to preserve the same physical attributes as the continuous systems for continuum-dynamical applications unlike traditional practices. The modeling of complicated structural dynamical systems such as Euler-Bernoulli beams and Reissner–Mindlin plates is particularly shown here for illustration.  相似文献   
55.
A physically accurate and computationally effective pure finite-element-based methodology for Resin Transfer Molding (RTM) process simulations is presented. The formulations are developed starting with the time-dependent mass conservation equation for the resin flow. Darcy's flow approximations are invoked for the velocity field, thereby forming a transient governing equation involving the pressure field and the resin saturation fill factor which tracks the location of the resin front surface. Finite element approximations are then introduced for both the fill factor and the pressure field, and the resulting transient discrete equations are solved in an iterative manner for both the pressures and the fill factors for tracking the progression of the resin front in an Eulerian mold cavity. The formulation involves only a pure finite-element Eulerian mesh discretization of the mold cavity and does not require specification of control volume regions and has no time increment restrictions that exist as in the traditional explicit finite-element-control volume based formulations. The present formulations accurately account for and capture the physical transient nature of the mold-filling process while maintaining improved numerical and computational attributes. Mold-filling simulations involving various geometrically complex mold configurations are presented, demonstrating the applicability of the developments for practical manufacturing process simulations.  相似文献   
56.
Residual stress development in heterogeneous or composite materials is an important problem in manufacture process modeling. Composites possess an intricate microstructure in which the mismatch in thermal expansion coefficients between the fiber and matrix can lead to residual thermal stresses upon part cool-down. It is commonly assumed that prior to cool-down, the entire composite at both micro and macro length scales is at a zero stress temperature. As cool-down initiates, the mismatch in thermostress behavior and the mismatch in viscoelastic time-dependent behavior of the two phases lead to built-in residual stresses in the final product. A novel finite element approach is presented here for the coupled thermovisoelastic analysis of polymer-matrix composite structures containing microscopic heterogeneities. Due to its inherent advantages over other techniques, the asymptotic homogenization approach is employed to obtain the homogenized properties for use in the macroscale problem. For illustration, a simple Kelvin-Voight viscoelastic solid is studied to demonstrate the formulations involved in similar materials for which the time-dependent stress-strain relationship is subsequently homogenized. The formulation accounts for the dissipative corrector behavior for heterogeneous viscoelastic materials. An analytical solution for the degenerative homogeneous viscoelastic material subject to uniform thermal relaxation is employed to verify part of the formulations. Additional examples are shown to further illustrate the approach for more complex scenarios.  相似文献   
57.
A generalized modelling and analysis approach of thermally induced coupled vibrations of elastic thin-walled configurations with arbitrary open cross-sections are presented in conjunction with a unified implicit transient methodology. Limited research which takes into account the influence of rapid thermal heating effects on structures involving various forms of coupling appears in the literature. As a consequence, the dynamic response of such thin-walled structures of arbitrary open cross-section to rapid heating are described here. Effects involving triple, double, and no coupling between bending and torsional vibrations caused by sudden heating on these structures are examined. Numerical test cases are presented which describe the influence of sudden heating on elastic thin-walled structures of arbitrary open cross-sections.  相似文献   
58.
An integrated framework and computational technology is described that addresses the issues to foster absolute scalability (A‐scalability) of the entire transient duration of the simulations of implicit non‐linear structural dynamics of large scale practical applications on a large number of parallel processors. Whereas the theoretical developments and parallel formulations were presented in Part 1, the implementation, validation and parallel performance assessments and results are presented here in Part 2 of the paper. Relatively simple numerical examples involving large deformation and elastic and elastoplastic non‐linear dynamic behaviour are first presented via the proposed framework for demonstrating the comparative accuracy of methods in comparison to available experimental results and/or results available in the literature. For practical geometrically complex meshes, the A‐scalability of non‐linear implicit dynamic computations is then illustrated by employing scalable optimal dissipative zero‐order displacement and velocity overshoot behaviour time operators which are a subset of the generalized framework in conjunction with numerically scalable spatial domain decomposition methods and scalable graph partitioning techniques. The constant run times of the entire simulation of ‘fixed‐memory‐use‐per‐processor’ scaling of complex finite element mesh geometries is demonstrated for large scale problems and large processor counts on at least 1024 processors. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
59.
This paper describes new and recent advances in the development of a hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer problems. The transfinite element methodology, while retaining the modelling versatility of contemporary finite element formulations, is based on application of transform techniques in conjunction with classical Galerkin schemes and is a hybrid approach. The purpose of this paper is to provide a viable hybrid computational methodology for applicability to general transient thermal analysis. Highlights and features of the methodology are described and developed via generalized formulations and applications to several test problems. The proposed transfinite element methodology successfully provides a viable computational approach and numerical test problems validate the proposed developments for conduction/convection/radiation thermal analysis.  相似文献   
60.
A new explicit variable time-integration methodology and architecture which possesses self-starting attributes, eliminates the need to involve acceleration computations, and which has improved accuracy characteristics in comparison to the traditional central-difference-type formulations customarily advocated is described for applicability to computational structural dynamics. To sharpen the focus of the present study, an explicit variable time-integration architecture which is relatively simple, yet effective, is described. Unlike variable explicit time-integration formulations adopted in the past, the present self-starting variable time-integration architecture and implementation aspects facilitate a simplified representation and a straightforward and effective approach for combining finite element meshes requiring different time steps in a single analysis. Numerical test cases are provided which demonstrate the applicability of the proposed formulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号