首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   0篇
化学工业   8篇
金属工艺   22篇
机械仪表   3篇
建筑科学   2篇
能源动力   2篇
轻工业   2篇
石油天然气   3篇
一般工业技术   14篇
冶金工业   7篇
自动化技术   9篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   6篇
  2012年   5篇
  2011年   5篇
  2009年   9篇
  2007年   5篇
  2006年   1篇
  2005年   3篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
排序方式: 共有72条查询结果,搜索用时 0 毫秒
21.
This paper describes a method and a system to automate the design of forging geometries. The method is derived from the principles and the actual practices of forging design used by experienced forging designers. Due to the diversity of the knowledge and problem solving techniques required for forging design, a combination of knowledge-based and algorithmic techniques was employed to implement the AFD (automated forging design) system. Given a set of design specifications, that is, machined part geometry, processing conditions, and special design considerations, the AFD system designs the forging section geometry automatically. Initial results from AFD show that it can be a powerful tool for designing geometries for the rib-web type of forgings.  相似文献   
22.
Understanding chip formation mechanisms in hard turning is an important area of research. In this study, experiments with varying cutting conditions and tool edge geometry were performed concurrently with finite element simulations. The aim was to investigate how the two mechanisms reported in literature namely—surface shear-cracking (SCH) and catastrophic thermoplastic instability (CTI) contribute to overall chip geometry and machining forces. By varying tool edge geometry and cutting conditions predominance of one over another is discussed. The calculation prescribed by Recht [Recht, R., 1964. Catastrophic thermoplastic shear. J. Appl. Mech. 31, 189–193] for representative cutting conditions resulted in a small critical cutting speed of 0.034 m/min indicating CTI was operative in the range of cutting conditions tested. FEM simulations were conducted on a subset of experimental conditions. Chip geometry and forces were compared between experiments and simulations. The experimental results indicated that SCH predominated in a majority of conditions. However, formation of saw-tooth chips in the FEM simulations established the occurrence of CTI also. Specifically, the edge radius did not alter chip geometry parameters. However, machining forces decreased with cutting speed and chip formation frequency increased linearly with cutting speed. A more negative rake angle also increased the chip pitch. The findings also indicate that only an intrinsic length scale governs saw-tooth chip formation in hard turning.  相似文献   
23.
Determination of process limits and parameters for hydroforming was conducted applying widely known plasticity, membrane and thin-thick walled tube theories. Analytical predictions were compared with experimental findings. Simple but useful analytical models to predict buckling, wrinkling and bursting as well as axial force, internal pressure, counter force and thinning in tube hydroforming were verified with experimental results.  相似文献   
24.
We present models to predict the protrusion height of “Tee-shaped” hydroformed parts, both because this information is of direct relevance to engineers attempting to build such parts and also to illustrate an advantageous process for developing design guidelines for tube hydroforming (THF) in general. A newly proposed design of experiments technique, Low Cost Response Surface Method (LCRSM), was utilized to facilitate the economical prediction and optimization of this height as a function of geometrical parameters subject to thinning of the wall thickness at the protrusion region. The same methodology is also proposed for the economical investigation of other geometries and conditions. As a result of this investigation, not only were known and expected trends of effect of parameters verified, but also numerical values within a practical range of parameters at certain conditions were obtained. In addition, interactions between factors were also revealed as predicted. Moreover, this information was gained from a substantially reduced number of finite element analysis (FEA) simulations via LCRSM compared to standard response surface method (RSM) or factorial techniques, avoiding costly physical experimentation.  相似文献   
25.
Spark erosion and laser-cutting processes were examined in terms of their effects on the magnetic properties of grain-oriented electrical steels at working frequencies. The maximum permeability value in each case was considered a reference to determine the quantitative effect of cutting and eroding methods as well as the effects of heat treatment. To minimize the deterioration that appears after the piercing process is implemented, the specimens were subjected to heat treatment at the most appropriate temperature. The influence of stress-relief annealing could be observed throughout the domain refinement on the surface by using magneto-optical Kerr microscopy. Additionally, it was clearly seen that the domain contrast at the cut edge of the spark-eroded sample was more uniform than that provided by laser cutting upon applying a high AC-field amplitude.  相似文献   
26.
In this study a new simplified 3-D numerical method and the associated computer program have been developed to simulate the shape rolling process. The 2-D rigid-plastic finite element method (FEM), used for the generalized plane-strain condition, is combined with the slab method. This method, called FSEM (finite and slab element method), reduces the computational effort without losing much accuracy obtained in the 3-D computer simulation of the shape rolling process. The FSEM has been used to develop a computer program, called TASKS for three-dimensional analysis of shape-rolling as a kinematically steady-state process. The program TASKS has been used to simulate the metal flow and the bulge profile in flat rolling of slabs, the shape rolling of a simple H section, and the rolling of a practical H-beam section. In flat rolling, predicted spreads agreed well with experimental results, given in the literature. The metal flow in rolling of a simple H section was compared with results of a full 3-D simulation, obtained by other investigators. The comparison indicated that the present predictions give quite good results. Finally, the predictions made for a practical pass, used in rolling H sections, also compared well with experimental data.  相似文献   
27.
High density nano-crystalline MgB2 bulk superconductors with induced pinning centres were prepared from elemental precursors by a sequence of ball milling, heat treatment, and final pressing. The XRD results revealed the main phase was MgB2 with a minor component of MgO. The magnetic moment versus temperature indicated that the transition temperature of MgB2 samples was around 34 K, which is less than the typical transition temperature of commercial powders and also the transition temperature strongly depended on the milling time. It is well known that introduction of defects, grain boundaries and impurities act as effective flux pinning centres in MgB2 and results in increased critical current density, Jc and decreased the transition temperature, Tc. The magnetization measurements were performed using VSM at 10 K, 20 K and 30 K, and the MH curves indicated a complete flux jump effect, which is a severe problem for the application of superconductors. It was determined that a noticeable amount of heating (0.3 K jumps at 10 K) occurs at these jumps. In addition, it was found that the sweeping rate of magnetic field and the size of bulk sample are very effective to promote the flux jumping and whereas a low sweeping rate (12 Oe/s) avoids these “avalanches”, consistent with a kind of supercritical phenomenon: going slower allows the field gradients to stay close enough to equilibrium so that the avalanche effect is not triggered. In contrast, the sweeping rate of 100 Oe/s leads to numerous jumps.  相似文献   
28.
The research discussed in this article focuses on the effects of tool geometry (i.e., rake angle and cutting edge radius) and flank wear upon burr formation in face milling of a cast aluminum alloy. As to tool edge preparation, the use of a tool with variable cutting edge radius was investigated using FEM, and compared for its cutting performance (i.e., burr reduction and tool life) with a conventional tool with uniform cutting edge radius. In order to evaluate 3D face milling through 2D orthogonal cutting simulations, the cross-sections that consist in the cutting speed direction and chip flow direction were selected at different locations along the tool rounded corner. At these cross-sections, the local value of cutting edge radius and their associated tool rake angles as well as the effective uncut chip thickness were determined for 2D cutting simulations. In addition, 3D face milling simulations were conducted to investigate more realistic chip flow and burr generation. Comparisons were made for burrs produced from 3D simulations with a sharp tool, 3D simulations with a worn tool and face milling experiments. Finally, recommendations for cutting tool design are made to reduce burr formation in face milling.  相似文献   
29.
A solid waste management system based on the 3R principle: reduce, reuse, and recycle. There are two major recycling methods for conversion of plastic wastes to synthetic fuels: (a) pyrolysis in absence and presence of catalyst and (b) thermal and/or catalytic cracking. Pyrolysis is a complex series of chemical and thermal reactions to decompose or depolymerize organic material under oxygen-free conditions. The most affecting variables of plastic pyrolysis are catalyst type and shape, temperature, and residence time. Certain types of waste plastics such as polystyrene (PS), polyethylene (PE), and polypropylene (PP) are generally used in pyrolysis. The plastic wastes can be pyrolyzed into liquid, gas, and solid residue products. The pyrolysis of plastic wastes produces a whole spectrum of hydrocarbons including paraffins, olefins, naphthalenes, and aromatics. The total yields of paraffins and olefins of PE and PP wastes obtained by pyrolysis were higher than that of PS. The oil obtained from plastic pyrolysis could improve performance by modifying engine. The addition of catalyst in the pyrolysis can be a more efficient method to produce high valuable products with mainly gasoline-range hydrocarbons. The catalytic decomposition was produced much more light hydrocarbons than that of thermal decomposition. Especially, ZSM-5 with a smaller pore size, rather than that of zeolite Y was more cracked into light hydrocarbons such as C6-C12 hydrocarbons and gas products.  相似文献   
30.
This paper introduces a systematic approach for the design of an adaptive neuro-fuzzy inference system (ANFIS) for latex weight control of level loop carpets. In high production volume of some industries, manual control could lead to undesirable variations in product quality. Therefore, process parameters require continuous checking and testing against quality standards. One way to overcome this problem is to use statistical process control by which a complete elimination of variability may not be possible. Fuzzy logic (FL) control is one of the most significant applications of fuzzy logic and fuzzy set theory. Fuzzy if-then rules (controllers) were developed in a systematic way that formed the backbone of the neuro-fuzzy control system. The developed ANFIS was able to produce crisp numerical outcomes to predict latex weights. The neuro-fuzzy system behaved like human operators. ANFIS outcomes were encouraging because they provide a more efficient and uniform distribution of latex weight and seemed to be better than the other statistical process control tools. FL controllers provide a feasible alternative to capture approximate, qualitative aspects of human reasoning and decision making processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号