首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   465篇
  免费   31篇
  国内免费   1篇
电工技术   6篇
化学工业   107篇
金属工艺   4篇
机械仪表   15篇
建筑科学   1篇
能源动力   12篇
轻工业   33篇
水利工程   5篇
石油天然气   1篇
无线电   70篇
一般工业技术   81篇
冶金工业   50篇
原子能技术   3篇
自动化技术   109篇
  2024年   1篇
  2023年   11篇
  2022年   19篇
  2021年   42篇
  2020年   19篇
  2019年   16篇
  2018年   27篇
  2017年   17篇
  2016年   23篇
  2015年   12篇
  2014年   8篇
  2013年   28篇
  2012年   25篇
  2011年   33篇
  2010年   18篇
  2009年   21篇
  2008年   16篇
  2007年   16篇
  2006年   12篇
  2005年   8篇
  2004年   6篇
  2003年   8篇
  2002年   3篇
  2001年   6篇
  1999年   6篇
  1998年   26篇
  1997年   16篇
  1996年   5篇
  1995年   6篇
  1994年   5篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1972年   1篇
  1965年   1篇
排序方式: 共有497条查询结果,搜索用时 0 毫秒
491.
The peroxidation of different polyunsaturated fatty acids (PUFA) after photoirradiation in aqueous solution was evaluated by measuring fatty acid loss and malonaldehyde production in medium. The oxidation rates of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), two highly unsaturated fatty acids of the n−3 series, were surprisingly lower (14 and 22%, respectively) than the oxidation rates of linoleic, α-linolenic, γ-linolenic, dihomo γ-linolenic, and arachidonic acids (62–90%). The quantities of malonaldehyde (MA) produced were assayed simultaneously by gas chromatography (GC) and high performance liquid chromatography (HPLC). MA production was found to be related to both the degree of unsaturation and the metabolic series of the fatty acid. The maximum value was observed with arachidonic acid (MA production from 2 mM arachidonic acid in aqueous solution was estimated at 44.9±6.0 μM by GC and 46.8 ±4.0 μM by HPLC). Eicosapentaenoic acid and docosahexaenoic acid produced lower MA quantities compared to arachidonic acid (MA production from 2 mM EPA and 2 mM DHA was estimated at 17.9±1.5 μM and 37.9±0.7 μM, respectively, by GC, and 26.3±4.9 μM and 37.3±4.2 μM, respectively, by HPLC). The MA yield, defined as the amount of MA (nmols) produced per 100 nanomoles of oxidized fatty acid, was used to express the susceptibility of individual PUFA to peroxidation. The MA yield correlated well with the degree of unsaturation, but was independent of carbon chain length and metabolic series. The study suggests that adequate assessment of lipid peroxidation cannot be achieved by measuring MA formation alone, but it also requires knowledge of the fatty acid composition of the system studied.  相似文献   
492.
The combination of the two complementary imaging modalities 19F magnetic resonance imaging (MRI) and fluorescence imaging (FLI) possesses high potential for biological and medical applications. Herein we report the first design, synthesis, dual detection validation, and cytotoxic testing of four promising BODIPY dyes for dual 19F MRI–fluorescence detection. Using straightforward Steglich reactions, small fluorinated alcohols were easily covalently tethered to a BODIPY dye in high yields, leaving its fluorescence properties unaffected. The synthesized compounds were analyzed with various techniques to demonstrate their potential utility in dual imaging. As expected, the chemically and magnetically equivalent trifluoromethyl groups of the agents exhibited a single NMR signal. The determined longitudinal relaxation times T1 and the transverse relaxation times T2, both in the lower second range, enabled the imaging of four compounds in vitro. The most auspicious dual 19F MRI–fluorescence agent was also successfully imaged in a mouse post‐mortem within a 9.4 T small‐animal tomograph. Toxicological assays with human cells (primary HUVEC and HepG2 cell line) also indicated the possibility for animal testing.  相似文献   
493.
This study presented a refining process and reported on fatty acid composition and the physicochemical properties of the oil from black soldier fly larvae (BSFL). Crude larvae oil was purified through four steps consisting of degumming, neutralization, bleaching, and deodorization. Optimum degumming conditions that give the highest phospholipid weight and oil consisted of water concentration of 7% (v/v), followed by addition of H2SO4 at a concentration of 0.5% (v/v). Optimum conditions for saponification that maximize saponification value and free fatty acid (FFA) value were 0.4 mg NaOH/100 g oil, 1 hour, and 80 °C of NaOH quantity, reaction time, and temperature, respectively. The oil was then dehydrated using 10 mg Na2SO4/g oil. The bleaching process that gives maximum oil yield consisted of activated carbon at concentration of 5% (w/w), followed by centrifugation at a speed of 5000 rpm (radius = 86 mm) for 30 min. The contents of lauric acid, linoleic acid, and linolenic acid in purified oil were 28.8%, 11.1%, and 0.4%, respectively. Physicochemical properties of the refined oil included viscosity of 96 ± 0.14 cP (measured at 20 °C), FFA value of 0.45 ± 0.017%, acid value of 0.9 ± 0.043 mg KOH g−1, saponification value of 215.78 mg KOH g−1, iodine value of 53.7 gI2/100 g, and peroxide index of 133 mEq kg−1.  相似文献   
494.
The simultaneous puncture and cutting behavior of elastomers was investigated by pointed blades. Puncture/cutting tests by three‐pointed blades were performed with different elastomer membranes, including butyl, neoprene, and nitrile rubbers. The fracture mechanisms associated to puncture/cutting were investigated. The quantitative material properties which control the puncture/cutting resistance are obtained. The results have showed that the crack growth propagation is controlled by the material viscoelastic and the fracture behaviors of material, as well as the friction between the pointed blade and material. As evidenced from the fracture mechanism analysis, the friction contributes to the resistance of material against the simultaneous puncture and cutting by a factor of more than 60%. It has also been that the penetration force and the global fracture energy depend on the blade tip angle, the cutting edge angle, and the blade lubrication. Finally, an analysis of mixed‐mode fracture based on puncture/cutting by pointed blades has been described. The crack propagation is a synergistic interaction between the fracture modes I and III. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42150.  相似文献   
495.
496.
By using computer modeling and lead structures from our earlier SAR results, a broad variety of pyrrole‐, indole‐, and pyrazole‐based compounds were evaluated as potential fructose 1,6‐bisphosphatase (FBPase) inhibitors. The docking studies yielded promising structures, and several were selected for synthesis and FBPase inhibition assays: 1‐[4‐(trifluoromethyl)benzoyl]‐1H‐indole‐5‐carboxamide, 1‐(α‐naphthalen‐1‐ylsulfonyl)‐7‐nitro‐1H‐indole, 5‐(4‐carboxyphenyl)‐3‐phenyl‐1‐[3‐(trifluoromethyl)phenyl]‐1H‐pyrazole, 1‐(4‐carboxyphenylsulfonyl)‐1H‐pyrrole, and 1‐(4‐carbomethoxyphenylsulfonyl)‐1H‐pyrrole were synthesized and tested for inhibition of FBPase. The IC50 values were determined to be 0.991 and 1.34 μM , and 575, 135, and 32 nM , respectively. The tested compounds were significantly more potent than the natural inhibitor AMP (4.0 μM ) by an order of magnitude; indeed, the best inhibitor showed an IC50 value toward FBPase more than two orders of magnitude better than that of AMP. This level of activity is virtually the same as that of the best currently known FBPase inhibitors. This work shows that such indole derivatives are promising candidates for drug development in the treatment of type II diabetes.  相似文献   
497.
We prepared Ba3−xYxCo2Fe24O41 (Y-Co2Z, x = 0, 0.2, and 0.4) by the solid-state reaction method. Y-Co2Z and polyaniline (PANI) composites (named as Y-P0, Y-P2, and Y-P4) were prepared by using the in-situ polymerization method. The Y-doping played an important role in the variation of lattice parameters, a and c. The combination of Y-doping and PANI modified the magnetic properties of the composites, which could be observed by the changing of the saturation magnetization and coercivity. This combination had also affected the electromagnetic properties of composites through the measurements of complex permittivity and permeability. Using the transmission line theory, we calculated refection loss (RL) of composites with the variation thickness of 1.00–2.50 mm. Our composites tuned the minimum RL from the X band (RL = −29.6 dB at 11.4 GHz for Y-P2) to Ku band (RL = −16.3 dB at 15.7 GHz for Y-P4 and RL = −26.4 dB at 16.6 GHz for Y-P4). For maximum effective bandwidth, our composites covered a huge range from the S and C bands (Y-P0 with 3.9 GHz in the range of 3.4–7.3 GHz) through the X band (Y-P2 with 3.9 GHz in the range of 9.0–12.9 GHz) to the Ku band (Y-P4 with 4.0 GHz in the range of 13.8–17.8 GHz). Those properties proved that the composites could act as promising absorbers in the S, C, X, and Ku bands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号