首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   889篇
  免费   48篇
电工技术   14篇
化学工业   278篇
金属工艺   24篇
机械仪表   23篇
建筑科学   38篇
能源动力   29篇
轻工业   90篇
水利工程   12篇
石油天然气   1篇
无线电   51篇
一般工业技术   204篇
冶金工业   50篇
原子能技术   4篇
自动化技术   119篇
  2023年   7篇
  2022年   24篇
  2021年   31篇
  2020年   23篇
  2019年   23篇
  2018年   30篇
  2017年   24篇
  2016年   28篇
  2015年   25篇
  2014年   41篇
  2013年   67篇
  2012年   53篇
  2011年   56篇
  2010年   42篇
  2009年   41篇
  2008年   48篇
  2007年   42篇
  2006年   31篇
  2005年   34篇
  2004年   37篇
  2003年   19篇
  2002年   17篇
  2001年   9篇
  2000年   16篇
  1999年   10篇
  1998年   14篇
  1997年   14篇
  1996年   13篇
  1995年   11篇
  1994年   7篇
  1993年   14篇
  1992年   10篇
  1991年   6篇
  1990年   6篇
  1989年   7篇
  1988年   3篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1971年   4篇
排序方式: 共有937条查询结果,搜索用时 200 毫秒
141.
Nanotechnology-introduced materials have promising applications as nanocarriers for drugs, peptides, proteins and nucleic acids. Several studies showed that the geometry (shape and size) and chemical properties of nanoparticles affect the kinetics and pathways of cellular uptake and their intracellular trafficking and signaling. Accurate physico-chemical characterization of nanoparticles customarily precedes their use in cell biology and in vivo experiments. However, a fact that is easily overlooked is that nanomaterials decorated with organic matter or resuspended in aqueous buffers can be theoretically contaminated by fungal and bacterial microorganisms. While investigating the effects of extensively characterized PEGylated carbon nanotubes (PNTs) on T lymphocyte activation, we demonstrated bacterial contamination of PNTs, which correlated with low reproducibility and artifacts in cell signaling assays. Contamination and artifacts were easily eliminated by preparing the materials in sterile conditions. We propose that simple sterile preparation procedures should be adopted and sterility evaluation of nanoparticles should be customarily performed, prior to assessing nanoparticle intracellular internalization, trafficking and their effects on cells and entire organisms.  相似文献   
142.
143.
Xenogeneic biomaterials Cerbone® and OsteoBiol® are widely used in oral implantology. In dental practice, xenogeneic biomaterial is usually combined with autologous bone to provide bone volume stability needed for long-term dental implants. Magnesium alloy implants dissolve and form mineral corrosion layer that is directly in contact with bone tissue, allowing deposition of the newly formed bone. CSBD heals by intramembranous ossification and therefore is a convenient model for analyses of ostoconductive and osteoinductive properties of different type of biomaterials. Magnesium alloy-enriched biomaterials have not yet been applied in oral implantology. Therefore, the aim of the current study was to investigate biological properties of potentially new bovine xenogeneic biomaterial enriched with magnesium alloy in a 5 mm CSBD model. Osteoconductive properties of Cerabone®, Cerabone® + Al. bone, and OsteoBiol® were also analyzed. Dynamics of bone healing was followed up on the days 3, 7, 15, 21, and 30. Calvary bone samples were analyzed by micro-CT, and values of the bone morphometric parameters were assessed. Bone samples were further processed for histological and immunohistochemical analyses. Histological observation revealed CSBD closure at day 30 of the given xenogeneic biomaterial groups, with the exception of the control group. TNF-α showed high intensity of expression at the sites of MSC clusters that underwent ossification. Osx was expressed in pre-osteoblasts, which were differentiated into mature osteoblasts and osteocytes. Results of the micro-CT analyses showed linear increase in bone volume of all xenogeneic biomaterial groups and also in the control. The highest average values of bone volume were found for the Cerabone® + Mg group. In addition, less residual biomaterial was estimated in the Cerabone® + Mg group than in the Cerabone® group, indicating its better biodegradation during CSBD healing. Overall, the magnesium alloy xenogeneic biomaterial demonstrated key properties of osteoinduction and biodegradidibility during CSBD healing, which is the reason why it should be recommended for application in clinical practice of oral implantology.  相似文献   
144.
The influence of the temperature on the cohesive laws for an epoxy adhesive is studied in the glassy region, i.e. below the glass transition temperature. Cohesive laws are derived in both Mode I and Mode II under quasi-static loading conditions in the temperature range $-30\le T \le 80^{\,\circ }$ C. Three parameters of the cohesive laws are studied in detail: the elastic stiffness, the peak stress and the fracture energy. Methods for determining the elastic stiffness in Mode I and Mode II are derived and evaluated. Simplified bi-linear cohesive laws to be used at any temperature within the studied temperature range are derived for each loading mode. All parameters of the cohesive laws are measured experimentally using only two types of specimens. The adhesive has a nominal layer thickness of 0.3 mm and the crack tip opening displacement is measured over the adhesive thickness. The derived cohesive laws thus represent the entire adhesive layer as having the present layer thickness. It is shown that all parameters, except the Mode I fracture energy, decrease with an increasing temperature in both loading modes. The Mode I fracture energy is shown to be independent of the temperature within the evaluated temperature span. At $80^{\,\circ }$ C the Mode II fracture energy is decreased to about 2/3 of the fracture energy at $-30^{\,\circ }$ C. The experimental results are verified by finite element analyses.  相似文献   
145.
146.
The most important design parameters for roller presses can be referred to flow and compression characteristics of bulk materials. Usually the flow properties are measured in the low stress range 1–50 kPa at the shear rate of about 1 mm/min. But this does not fit the stress regimes in the roller press. Therefore, the compression and flow behavior of the powder have to be investigated at higher pressures, shear rates, and shear displacements. These properties of bulk materials in the so-called medium pressure range 50–1000 kPa can be analyzed using a press shear cell. Tests were implemented with limestone, bentonite, and microcrystalline cellulose at average 23°C powder bed temperature using shear rates from 0.00042 to 0.042 m/s and a more realistic preshear displacement from 0.1 to 2 m for practical applications in powder compaction. Physical observation based compression functions were developed for the low and medium pressure range, which include simple equations for the compression rate and specific compression work.  相似文献   
147.
ABSTRACT

Two-dimensional finite element (FE) compressive stress analyses were carried out on the particle compound material to understand the stress pattern distributions before cracking. FE analysis was followed by discrete element (DE) simulation. A study of the crack propagating mechanism in a particle was represented by a model material that typifies pellets of high-strength pressed agglomerate building materials. For this, concrete spheres of strength category B35 (compressive strength 35 N/mm2) were used. It was observed that the ring tensile stress is responsible for the crack initiation in the spherical particle compounds.  相似文献   
148.
149.
BACKGROUND: The efficiency of bioethanol production from wheat biomass is related to the quality of end products as well as to safety criteria of co‐products such as distiller's dried grains with solubles (DDGS). The inclusion of a new biocatalyst for non‐starch polysaccharide degradation in fermentation processes could be one of the solutions. The objective of this study was to evaluate the influence of β‐xylanases in combination with traditional amylolytic enzymes on the efficiency of bioethanol production and DON detoxification during fermentation of Fusarium‐contaminated wheat biomass with high concentration of deoxynivalenol (DON; 3.95 mg kg?1). RESULTS: The results showed that the negative effect of Fusarium spp. on yield and quality of bioethanol could be eliminated by the application of Trichoderma reesei xylanase in combination with amylolytic enzymes. This technological solution allowed to increase the concentration of ethanol in the fermented wort by 35.3% and to improve the quality of bioethanol by decreasing the concentrations of methanol, methyl acetate, isoamyl and isobutyl alcohols. Mass balance calculations showed that DDGS was the main source of DON contamination, comprising 74% of toxin found in wheat biomass. By using new enzyme combination for wheat biomass saccharification, a higher level of detoxification (41%) of DON was achieved during the fermentation process. CONCLUSION: The addition of Trichoderma reesei xylanase played a positive role in bioethanol production from Fusarium‐contaminated wheat biomass, indicating that the yeast‐growing medium was enriched during the enzymatic treatment. Copyright © 2011 Society of Chemical Industry  相似文献   
150.
Titania-supported palladium catalysts modified by tungsten have been tested for the total oxidation of propane. The addition of tungsten significantly enhanced the catalytic activity. Highly active catalysts were prepared containing a low loading of 0.5 wt.% palladium, and activity increased as the tungsten loading was increased up to 6 wt.%. Catalysts were characterised using a variety of techniques, including powder X-ray diffraction, laser Raman spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed reduction and aberration-corrected scanning transmission electron microscopy. Highly dispersed palladium nanoparticles were present on the catalyst with and without the addition of WOx. However, the addition of WOx slightly increases the average palladium particle size, and there was some evidence for the Pd forming epitaxial islands on the support in the tungsten-doped samples. Surface analysis identified a combination of Pd0 and Pd2+ on a Pd/TiO2 catalyst, whereas all of the Pd loading was found in the form of Pd2+ with the addition of tungsten into the catalysts. At low tungsten loadings, isolated monotungstate and some polytungstate species were highly dispersed over the titania support. The concentration of polytungstate species increased as the loading was increased, and it was also promoted by the presence of palladium. The coverage of the highly dispersed tungstate species over the titania also increased as the tungsten loading increased. Some tungstate species were also found to be associated with the palladium oxide particles, and there was an enrichment of oxidised tungsten species at the peripheral interface of the palladium oxide nanoparticles and the titania. Sub-ambient temperature–programmed reduction experiments identified an increased concentration of highly reactive species on catalysts with palladium and tungsten present together, and we propose that the new WOx-decorated interface between PdOx and TiO2 particles may be responsible for the enhanced catalytic activity in the co-impregnated catalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号