首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   20篇
电工技术   11篇
综合类   1篇
化学工业   72篇
金属工艺   5篇
机械仪表   3篇
建筑科学   3篇
能源动力   7篇
轻工业   17篇
无线电   20篇
一般工业技术   44篇
冶金工业   8篇
原子能技术   4篇
自动化技术   21篇
  2023年   1篇
  2022年   1篇
  2021年   8篇
  2020年   8篇
  2019年   6篇
  2018年   6篇
  2017年   4篇
  2016年   10篇
  2015年   2篇
  2014年   7篇
  2013年   19篇
  2012年   8篇
  2011年   11篇
  2010年   12篇
  2009年   21篇
  2008年   9篇
  2007年   4篇
  2006年   7篇
  2005年   10篇
  2004年   6篇
  2003年   5篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1994年   3篇
  1993年   5篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有216条查询结果,搜索用时 15 毫秒
91.
The spatial gaps in organic films are compressed using cold and hot isostatic pressing (CIP and HIP, respectively) with the aim of enhancing their electrical characteristics. The microscopic gaps formed in amorphous organic films by inefficient molecular packing are difficult to compress using CIP and HIP; however, the macroscopic gaps formed between grains and other grains or substrates in polycrystalline organic films can be compressed using CIP and HIP. The gap compression by CIP and HIP in polycrystalline films enhances their electrical characteristics. Conversely, the electrical characteristics of amorphous films remain unchanged after CIP and HIP. HIP gives almost the same results as CIP in terms of gap compression and current enhancement, probably because the expected activation of molecular motion at high temperature is suppressed under high applied pressure. CIP markedly improves the performance of organic light‐emitting diodes, organic solar cells, and organic field‐effect transistors containing polycrystalline films. These findings are important for understanding the carrier injection and transport mechanisms of organic films containing gaps as well as enhancing the performance of future organic devices, especially those with polycrystalline films.  相似文献   
92.
Films of the quasi-2D perovskite based on 1-naphthylmethylamine (NMA) are promising as the gain medium for optically pumped lasing and future electrically pumped lasing because of its low lasing threshold and small electroluminescence efficiency rolloff. However, reasons for the low threshold and small efficiency rolloff are still unclear. Therefore, exciton dynamics are investigated in NMA-based quasi-2D perovskite films. It is found that quenching of bright excitons by other excitons or charge carriers is unlikely in NMA-based quasi-2D perovskite films, which is one reason for the low lasing threshold and small efficiency rolloff. Moreover, thermally stimulated current measurements reveal that the defect levels inside the band gap of the NMA-based quasi-2D perovskite are shallow, with a depth of ≈0.3 eV, causing a decrease in nonradiative exciton recombination through the defects. Therefore, population inversion can be easily achieved, leading to the low lasing threshold as well. For fabrication of NMA-based quasi-2D perovskite laser devices with even lower lasing thresholds, a circular-shaped optical resonator, and small-molecule-based defect passivation are used. Optically pumped lasing can be obtained from these devices, with a threshold of ≈1 µJ cm−2, which is one of the lowest values ever reported in any perovskite lasers.  相似文献   
93.
94.
The sorption performance of a modified carbon black was explored with respect to arsenic removal following batch equilibrium technique. Modification was accomplished by refluxing the commercial carbon black with an acid mixture comprising HNO(3) and H(2)SO(4). Modification resulted in the substantial changes to the inherent properties like surface chemistry and morphology of the commercial carbon black to explore its potential as sorbent. The suspension pH as well as the point of zero charge (pH(pzc)) of the material was found to be highly acidic. The material showed excellent sorption performance for the removal of arsenic from a synthetic aqueous solution. It removed approximately 93% arsenic from a 50mg/L solution at equilibration time. The modified carbon black is capable of removing arsenic in a relatively broad pH range of 3-6, invariably in the acidic region. Both pseudo-first-order and second-order kinetics were applied to search for the best fitted kinetic model to the sorption results. The sorption process is best described by the pseudo-second-order kinetic. It has also been found that intra-particle diffusion is the rate-controlling step for the initial phases of the reaction. Modelling of the equilibrium data with Freundlich and Langmuir isotherms revealed that the correlation coefficient is more satisfactory with the Langmuir model although Freundlich model predicted a good sorption process. The sorption performance has been found to be strongly dependent on the solution pH with a maximum display at pH of 5.0. The temperature has a positive effect on sorption increasing the extent of removal with temperature up to the optimum temperature. The sorption process has been found to be spontaneous and endothermic in nature, and proceeds with the increase in randomness at the solid-solution interface. The spent sorbent was desorbed with various acidic and basic extracting solutions with KOH demonstrating the best result ( approximately 85% desorption).  相似文献   
95.
Adsorption of As(V) on surfactant-modified natural zeolites   总被引:4,自引:0,他引:4  
Natural mordenite (NM), natural clinoptilolite (NC), HDTMA-modified natural mordenite (SMNM) and HDTMA-modified natural clinoptilolite (SMNC) have been proposed for the removal of As(V) from aqueous solution (HDTMA=hexadecyltrimethylammonium bromide). Influence of time on arsenic sorption efficiency of different sorbents reveals that NM, NC, SMNM and SMNC require about 20, 10, 110 and 20h, respectively to reach at state of equilibrium. Pseudo-first-order model was applied to evaluate the As(V) sorption kinetics on SMNM and SMNC within the reaction time of 0.5h. The pseudo-first-order rate constants, k are 1.06 and 0.52h(-1) for 1 and 0.5g of SMNM, respectively. The observed k values 1.28 and 0.70h(-1) for 1 and 0.5g of SMNC, respectively are slightly high compared to SMNM. Surfactant surface coverage plays an important role and a significant increase in arsenate sorption capacity could be achieved as the HDTMA loading level on zeolite exceeds monolayer coverage. At a surfactant partial bilayer coverage, As(V) sorption capacity of 97.33 and 45.33mmolkg(-1) derived from Langmuir isotherm for SMNM and SMNC, respectively are significantly high compared to 17.33 and 9.33mmolkg(-1) corresponding to NM and NC. The As(V) uptake was also quantitatively evaluated using the Freundlich and Dubinin-Kaganer-Radushkevich (DKR) isotherm models. Both SMNM and SMNC removed arsenic effectively over the initial pH range 6-10. Desorption performance of SMNM and SMNC were 66.41% and 70.04%, respectively on 0.1M NaOH regeneration solution.  相似文献   
96.
This paper deals with a feedback control using automatic choosing functions and the observer-control design procedure for nonlinear systems with linear measurement. A constant term which arises from linearization of a nonlinear equation is treated as a coefficient of a stable zero dynamics. A given nonlinear system is linearized piecewise so as to be able to design the linear optimal controllers with the linear observers. By the automatic choosing functions, these controllers are smoothly united into a single nonlinear feedback controller, which is called an augmented automatic choosing control of observer type. This controller is applied to a transient stability of power systems, whose simulation results show that the new controller enables to expand the stable region well. Copyright © 2009 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   
97.

In the present study, different combinations of multilayer sheets were prepared from 1 and 2 mm Mg AZ31 along with 0.25, 0.5, and 1 mm 304 L stainless steel. The texture and microstructure of the elongated samples (20 and 30 pct strain) were studied. It was found that the transversal stress plays an important role in both texture evolution and twinning in these composites. The obtained pole figures revealed an axial texture tilt with increasing steel layer volume fraction (V f). It was found that this is a direct effect of transverse stress, which becomes more significant upon reducing Mg V f. This extra stress component tilts the basal planes away from the original normal direction in monolithic samples. Moreover, our results indicate that with decreasing Mg V f, twinning activity was increased in the 20 pct deformed samples but reduced in the samples with 30 pct elongation. It is known that at high strains where sufficient transverse stress is generated, the activity of prismatic slip is significantly enhanced, which promotes the motion of dislocations and reduces the necessity of twinning. With decreasing Mg V f, stronger transversal stress is generated and Mg reaches the critical threshold of prismatic activity at lower strains.

  相似文献   
98.
We realize a nonvolatile and rewritable memory effect in an organic field-effect transistor (OFET) structure using polymethylmethacryrate (PMMA) dispersed with 10-methyl-9-phenylacridinium perchlorate (MPA+ClO4) as a gate dielectric. Applying a voltage between a top source-drain electrode and a bottom gate electrode induces electrophoresis of two ions of MPA+ and ClO4 towards the corresponding electrodes in the memory devices. The drain currents of the memory devices markedly increase from 10− 9 A to 10− 2 A under no gate voltage condition due to the strong space charge polarization effect. Our memory devices have excellent electrical bistability and retention characteristics, i.e. the memory on/off ratio reached 107 and the drain current maintained 40% of the initial value after 104 s.  相似文献   
99.
A simple method was developed that uses microbubbles as templates to fabricate hollow microspheres covered with a biodegradable polymer. By stably keeping microbubbles with the diameter of about 2 µm inside a solvent droplet dissolving a biodegradable polymer and then slowly drying the solvent, hollow microspheres that had an average inner diameter of about 2 µm and a shell thickness of about 500 nm were obtained. This simple method was successfully used to easily fabricate uniform hollow microspheres covered with poly-lactic acid (PLA) by using uniform 2-µm-diameter bubbles as templates.  相似文献   
100.
Various pathogens, such as Ebola virus, Marburg virus, Nipah virus, Hendra virus, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and SARS-CoV-2, are threatening human health worldwide. The natural hosts of these pathogens are thought to be bats. The rousette bat, a megabat, is thought to be a natural reservoir of filoviruses, including Ebola and Marburg viruses. Additionally, the rousette bat showed a transient infection in the experimental inoculation of SARS-CoV-2. In the current study, we established and characterized intestinal organoids from Leschenault’s rousette, Rousettus leschenaultii. The established organoids successfully recapitulated the characteristics of intestinal epithelial structure and morphology, and the appropriate supplements necessary for long-term stable culture were identified. The organoid showed susceptibility to Pteropine orthoreovirus (PRV) but not to SARS-CoV-2 in experimental inoculation. This is the first report of the establishment of an expandable organoid culture system of the rousette bat intestinal organoid and its sensitivity to bat-associated viruses, PRV and SARS-CoV-2. This organoid is a useful tool for the elucidation of tolerance mechanisms of the emerging rousette bat-associated viruses such as Ebola and Marburg virus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号