首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1136篇
  免费   37篇
电工技术   111篇
综合类   2篇
化学工业   386篇
金属工艺   33篇
机械仪表   31篇
建筑科学   29篇
能源动力   79篇
轻工业   80篇
石油天然气   4篇
无线电   38篇
一般工业技术   225篇
冶金工业   34篇
原子能技术   45篇
自动化技术   76篇
  2023年   6篇
  2022年   12篇
  2021年   29篇
  2020年   10篇
  2019年   21篇
  2018年   26篇
  2017年   16篇
  2016年   24篇
  2015年   18篇
  2014年   41篇
  2013年   70篇
  2012年   47篇
  2011年   96篇
  2010年   50篇
  2009年   69篇
  2008年   72篇
  2007年   51篇
  2006年   43篇
  2005年   36篇
  2004年   34篇
  2003年   43篇
  2002年   41篇
  2001年   24篇
  2000年   25篇
  1999年   30篇
  1998年   31篇
  1997年   17篇
  1996年   20篇
  1995年   18篇
  1994年   10篇
  1993年   13篇
  1992年   10篇
  1991年   12篇
  1990年   6篇
  1989年   9篇
  1988年   8篇
  1987年   7篇
  1986年   4篇
  1985年   17篇
  1984年   12篇
  1983年   7篇
  1982年   8篇
  1981年   10篇
  1980年   4篇
  1979年   8篇
  1978年   3篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
排序方式: 共有1173条查询结果,搜索用时 281 毫秒
71.
A new type of individual-cell-based on-chip multielectrode array (MEA) cell-cultivation system with an agarose microchamber (AMC) array for topographical control of the network patterns of a living neuronal network has been developed. The advantages of this system are that it allows control of the cell positions and numbers for cultivation using AMCs, as well as easy and flexible control of the pattern of connections between the AMCs through photothermal etching where a portion of the agarose layer is melted with a 1480 nm infrared laser beam. With adequate laser power, narrow micrometer-order grooves (microchannels) can easily be fabricated that can be used to combine neighbouring AMCs to enable topographical control of the neural network pattern. Using this system, an individual-cell-based neural network pattern was formed of rat hippocampal cells within the AMC array without cells escaping from the electrode positions in the microchamber during an eight-day cultivation, and could record cell firing in response to 1.5 V, 500 kHz stimulation through an electrode. This demonstrated the potential of the on-chip AMCMEA cell cultivation system for long-term single-cell-based electrophysiological measurement of a neural network system.  相似文献   
72.
In general, the stiffened plates consisting of steel plate elements are unavoidably accompanied by initial imperfections such as residual stresses and initial deflections, which have considerable effects on their ultimate strength. Therefore, it is needed for designing them to develop more rational method taking the ultimate strength influenced by initial imperfections into account rather than the conventional design method being on the basis of the linear elastic buckling theory.From this point of view, this study aims to evaluate rigorously the ultimate strength of orthogonally stiffened plate with initial imperfections under uniaxial in-plane compression. The elasto-plastic finite element method is applied to attain this purpose. By a happy combination of modal analytical technique and conventional finite element method, much reduction of the degree of freedom can be expected to be realized herewith. Some numerical calculations are performed by means of this rigorous method to examine the exactness of the analysis. Moreover, the numerical results are compared with the experimental ones.  相似文献   
73.
The iron-oxidizing bacterium Acidithiobacillus ferrooxidans SUG 2-2 is markedly resistant to mercuric chloride and can volatilize mercury (Hg0) from mercuric ion (Hg2+) under acidic conditions. To develop a microbial technique to volatilize and recover mercury from acidic and organic compound-containing mercury wastewater, which is usually produced in the course of everyday laboratory work in Okayama University, the effects of organic and inorganic chemicals on the mercury volatilization activity of A. ferrooxidans cells were studied. Among 55 chemicals tested, the mercury volatilization from a reaction mixture (pH 2.5) containing resting cells of SUG 2-2 (1 mg of protein) and mercury chloride (14 nmol) was strongly inhibited by AgNO3 (0.05 mM), K2CrO7 (1.0 mM), cysteine (1.0 mM), trichloroethylene (1 microM), and commercially produced detergents (0.05%). However, the strong inhibition by trichloroethylene and detergents was not observed when these organic compounds were chemically decomposed using Fenton's method before the treatment of the wastewater with SUG 2-2 cells. When 20 ml of water acidified with sulfuric acid (pH 2.5) containing ferrous sulfate (3%), diluted mercury wastewater (17.5 nmol of Hg2+) and SUG 2-2 cells (0.05 mg of protein) were incubated for 10 d at 30 degrees C, 47% of the total mercury in the wastewater was volatilized and recovered into a trapping reagent for metal mercury. However, when the organic compounds in the mercury wastewater were decomposed using Fenton's method and then treated with A. ferrooxidans cells, approximately 100% of the total mercury in the wastewater was volatilized and recovered.  相似文献   
74.
Inverse scattering for a three-dimensional object in the time domain   总被引:1,自引:0,他引:1  
An iterative inverse-scattering approach to reconstruction of electrical parameter distributions of a three-dimensional object by using time-domain field data is presented. The approach is the extension of the forward-backward time-stepping algorithm previously proposed for a two-dimensional object. Numerical examples of simulation data are given to assess the effectiveness of the proposed approach.  相似文献   
75.
Anionic surfactants are used in greater volume than any other surfactants because of their highly potent detergency and low cost of manufacture. However, they have not been used as templates for synthesizing mesoporous silica. Here we show a templating route for preparing mesoporous silicas based on self-assembly of anionic surfactants and inorganic precursors. We use aminosilane or quaternized aminosilane as co-structure-directing agent (CSDA), which is different from previous pathways. The alkoxysilane site of CSDA is co-condensed with inorganic precursors; the ammonium site of CSDA, attached to silicon atoms incorporated into the wall, electrostatically interacts with the anionic surfactants to produce well-ordered anionic-surfactant-templated mesoporous silicas (AMS). These have new structures with periodic modulations as well as two-dimensional hexagonal and lamellar phases. The periodic modulations may be caused by the coexistence of micelles that differ in size or curvature, possibly owing to local chirality. These mesoporous silicas provide a new family of mesoporous materials as well as shedding light on the structural behaviour of anionic surfactants.  相似文献   
76.
Fine-grained silicon nitride ceramics were investigated mainly for their high-strain-rate plasticity. The preparation and densification of fine silicon nitride powder were reviewed. Commercial sub-micrometer powder was used as raw powder in the “as-received” state and then used after being ground and undergoing classification operation. Chemical vapor deposition and plasma processes were used for fabricating nanopowder because a further reduction in grain size caused by grinding had limitations. More recently, nanopowder has also been obtained by high-energy milling. This process in principle is the same as conventional planetary milling. For densification, primarily hot pressing was performed, although a similar process known as spark plasma sintering (SPS) has also recently been used. One of the advantages of SPS is its high heating rate. The high heating rate is advantageous because it reduces sintering time, achieving densification without grain growth. We prepared silicon nitride nanopowder by high-energy milling and then obtained nanoceramics by densifying the nanopowder by SPS.  相似文献   
77.
In this study we developed composite coatings consisting of amorphous hydrogenated carbon (a-C:H) and molybdenum-disulfide (MoS2), and clarified their microstructure. In addition, we interpreted the tribological properties of the composite coatings in the viewpoint of a deposition-induced microstructural modification. The coatings were produced by the hybrid deposition technique of RF-generated methane and argon plasma and DC magnetron co-sputtering of MoS2 target. The deposition parameter investigated in this study was methane flow rate. Structural analyses were performed using a transmission electron microscope (TEM) and an atomic force microscope (AFM). Friction tests were conducted using a ball-on-disk type tribometer. From an electron micrograph, it was confirmed that nano-clusters were embedded into an amorphous carbon host matrix. Surface roughness of the composite coating was ~ 0.25 nm in Ra compared to 5.0 nm in Ra of sputtered MoS2. The concentration measurements were performed, and the results show that the sulfur and molybdenum concentration ratio, [S]/[Mo], is ~ 0.9, which indicates that the amount of sulfur was reduced due to the discharged plasma. In friction tests, composite coatings showed high friction in a vacuum condition. It was considered that lubricant MoS2 lamellar structures showing super-low friction in a vacuum condition during friction could not be formed between ball and coating during friction because of the lack of sulfur in embedded clusters.  相似文献   
78.
Abatement of CO2 emission is one of the most important issues in the 21st century regarding preservation of the earth environment. This paper addresses a utility operations planning problem for distributed energy management systems (DEMSs), where we are to obtain optimal plans that minimize both costs and CO2 emissions. A DEMS consists of multiple entities that seek their own economic profits. In this paper, we give a mathematical formulation of the utility operations planning problem for each entity, and propose an energy trading market, which utlizes a multi‐attribute auction protocol in order to deal with both a price and a CO2 emission rate. Experimental results show that collaboration among entities through the market provides a more profitable plan for each entity and abatement of CO2 emission is also achieved. © 2007 Wiley Periodicals, Inc. Electr Eng Jpn, 162(4): 54–63, 2008; Published online in Wiley InterScience ( www.interscience.wiley. com ). DOI 10.1002/eej.20418  相似文献   
79.
In the present study, the authors fabricated straight multilayer hybrid tubular in vitro vessel models (inner diameter Din = 10 mm; thickness T = 4 mm) composed of poly(vinyl alcohol) hydrogel (PVA‐H) and anisotropic mesh materials. The authors performed tensile, stress‐relaxation and cyclic‐tensile tests using axial and circumferential test pieces as well as pressure‐diameter (P‐D) tests using tubular test piece. In the tensile and stress‐relaxation tests, the anisotropic and nonlinear mechanical properties and hysteresis characteristic of the in vitro models were confirmed. The in vitro models also showed behavior qualitatively similar to that of native arteries in cycle‐tensile and P‐D tests. These results demonstrate that the mechanical properties of native vessels can be duplicated in an in vitro model by controlling the components of the mesh material, the orientation of elastic fibers in the mesh material, and the concentration and thickness of PVA‐H layers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
80.

Abstract  

Cr/silicalite-1 and Cr/H[B]MFI catalysts were prepared by the impregnation method, and Cr/H[B]MFI were further treated by steaming. The catalysts were employed for the oxidative dehydrogenation of propane to propylene with CO2 as the oxidant. Cr/H[B]MFI showed significantly higher catalytic activity than Cr/silicalite-1, and steamed Cr/H[B]MFI was superior in the reaction stability to Cr/H[B]MFI. The nature of the supported chromium species have been characterized by a number of physicochemical techniques, such as Raman, UV–vis and NMR. It is concluded that the steaming led to the auto-reduction of some Cr6+ to Cr3+, and resultant Cr3+ species might be located near the boron center in the borosilicate framework to counterbalance the negative charge of the framework. The transformation of Cr6+ species to Cr3+ species, facilitated by the steaming process and the presence of boron in the catalyst, is responsible for the enhanced stability of oxidative dehydrogenation of propane to propylene with carbon dioxide as the oxidant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号