首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   366篇
  免费   33篇
  国内免费   3篇
电工技术   7篇
综合类   1篇
化学工业   79篇
金属工艺   1篇
机械仪表   12篇
建筑科学   19篇
能源动力   26篇
轻工业   55篇
水利工程   2篇
石油天然气   3篇
无线电   26篇
一般工业技术   99篇
冶金工业   25篇
原子能技术   1篇
自动化技术   46篇
  2024年   3篇
  2023年   9篇
  2022年   11篇
  2021年   12篇
  2020年   8篇
  2019年   15篇
  2018年   15篇
  2017年   16篇
  2016年   14篇
  2015年   9篇
  2014年   22篇
  2013年   57篇
  2012年   38篇
  2011年   26篇
  2010年   15篇
  2009年   17篇
  2008年   9篇
  2007年   18篇
  2006年   6篇
  2005年   10篇
  2004年   13篇
  2003年   4篇
  2002年   8篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1998年   3篇
  1997年   4篇
  1996年   10篇
  1995年   4篇
  1994年   3篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1976年   1篇
  1970年   1篇
排序方式: 共有402条查询结果,搜索用时 140 毫秒
391.
392.
Poly(butyl acrylate‐co‐methyl methacrylate)‐montmorillonite (MMT) waterborne nanocomposites were successfully synthesized by semibatch emulsion polymerization. The syntheses of the nanocomposites were performed in presence of sodium montmorillonite (Na‐MMT) and organically modified montmorillonite (O‐MMT). O‐MMT was used directly after the modification of Na‐MMT with dimethyl dioctadecyl ammonium chloride. Both Na‐MMT and O‐MMT were sonified to obtain nanocomposites with 47 wt % solids and 3 wt % Na‐MMT or O‐MMT content. Average particle sizes of Na‐MMT nanocomposites were measured as 110–150 nm while O‐MMT nanocomposites were measured as 200–350 nm. Both Na‐MMT and O‐MMT increased thermal, mechanical, and barrier properties (water vapor and oxygen permeability) of the pristine copolymer explicitly. X‐ray diffraction and transmission electron microscope studies show that exfoliated morphology was obtained. The gloss values of O‐MMT nanocomposites were found to be higher than that of the pristine copolymer. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42373.  相似文献   
393.
Previous studies have shown the effects of Er,Cr:YSGG laser irradiation on the dentin bond strength; but there are few reports that show the significance of the irradiation with different laser parameters on dentin bond strength and interface morphology. This in‐vitro study attempted to evaluate the microtensile bond strength (μTBS) and interface morphology of resin‐dentin interfaces, either followed by treatment with Er,Cr:YSGG laser irradiation with different parameters or not. The flattened dentin samples of 35 bovine teeth were embedded into acrylic blocks and randomly divided into seven groups according to surface treatments using Er,Cr:YSGG lasers with different parameters: 3 W/20 Hz, 3 W/35 Hz, 3 W/50 Hz, 1.5 W/20 Hz, 1.5 W/35 Hz, 1.5 W/50 Hz, or no laser treatment (n = 5). Composite buildups were done over bonded surfaces and stored in water (24 hours at 37°C). Specimens were sectioned into sticks that were subjected to μTBS testing and observed under FE‐SEM. Control groups (27.70 ± 7.0) showed statistically higher values than laser‐irradiated groups. There were no significant differences among laser groups. Despite that, increasing the pulse frequency yielded slightly higher bond strength. Depending on laser settings, Er,Cr:YSGG laser irradiation caused interfacial gaps and resin tags with wings morphology. With the parameters used in this study, Er,Cr:YSGG laser irradiation promoted morphological changes within resin‐dentin interfaces and negatively influenced the bond strength of adhesive systems. Microsc. Res. Tech. 78:1104–1111, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
394.
This study was conducted in a Turkish province to investigate the presence of Salmonella spp. in 150 chicken meat samples using 2 phenotyping techniques: classic culture technique (CCT) and immunomagnetic separation (IMS). For the confirmation of the isolates at molecular levels, invA gene was detected in these isolates. The presence of invA, class 1 (Cls1) integrons, and integrase (Int1) genes was demonstrated by PCR assay; and the resistance of the isolated Salmonella spp. strains to antibiotics was determined by disk diffusion test. All the cultural and PCR results were evaluated together; Salmonella spp. were detected in a total of 64 (42.66%) chicken meat samples. Contamination rate was higher in carcasses (53.33%, n = 75) than in meat pieces (32%, n = 75). When results of standard culture were compared with IMS technique, IMS (n = 54) showed a clear superiority over the CCT (n = 38). A very high resistance rate (≥89.28%) to vancomycin, tetracycline, streptomycin, or nalidixic acid was found. Trimethoprim‐sulfamethoxazole resistance was present in 32.14%. Relatively lower incidence of resistance (≤8.33%) to gentamicin, chloramphenicol, ampicillin, and ceftriaxone was observed. Concurrent resistance to at least 4 antibiotics was detected in 92.85% of the isolates. Cls1 integrons and Int1 were positive in 80.95% and 95.23% of the isolates, respectively. However, Int1 alone was detected in 15.47% (n = 13). In conclusion, the high prevalence of Salmonella spp. in chicken meat may pose a potential public health risk, and the presence of antibiotic‐resistant Salmonella spp. isolate together with Cls1 integron and/or integrase might play an important role in horizontal antibiotic gene transfer.  相似文献   
395.
In the present study, the one-dimensional ZnO nanorod structures are produced within the different nickel and aluminum molecular weight ratios of 0–7% using the hydrothermal method. It is found that the aluminum (Al) and nickel (Ni) impurities with different ionic radius, chemical valence, and electron configurations of outer shell cause to vary the fundamental characteristic features including the crystallinity quality, crystallite size, surface morphology, nanorod diameter, optical absorbance, energy band gap, resistance, gas response, and gas sensing properties. The structural analyses performed by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) indicate that the samples are found to crystallize in the hexagonal wurtzite structure. The presence of optimum nickel and aluminum in the crystal system improves considerably the crystallinity quality and surface morphology. Additionally, the combination of electron dispersive X-ray (EDX) and XRD results declare that the Ni and Al impurities incorporate successfully into the ZnO crystal structure. Moreover, the diameters of nanorod structures in 1D orientation are determined to be 80 nm or below. The hexagonal wurtzite-type ZnO nanorod structure prepared by 5% Ni has more space between the nanorods and thus presents higher response to the CO2 detection. Further, the optical absorbance spectra display that the band gap value is observed to decrease regularly with the increment in the doping level as a result of band shrinkage effect depending on the enhancement of mobile hole carrier concentrations in the crystal structure. In other words, the doping mechanism leads to vary the homogeneities in the interfacial charges, nanorod diameters, ZnO oxide layer composition and thickness. The last test conducted in this study is responsible for the determination of CO2 gas sensing levels. The obtained gas sensing results are further compared with each other and literature findings. It is observed that 5% Ni-doped sample provides more successful results than other samples in the sensing CO2 gas at the different concentrations. All in all, the paper establishing a strong methodology between doping mechanism and change in the fundamental characteristic features of hexagonal wurtzite-type ZnO with the aid of advanced microscopy techniques will become pioneering research to answer key questions in materials sciences and electronic research.  相似文献   
396.
A crude extract was prepared from the fruiting body of Lepista flaccida, an edible mushroom and endoglucanase activity of the extract was increased 14-fold with ammonium sulphate precipitation. Maximum enzyme activity was seen at pH 4.0 and 50 °C when carboxymethylcellulose was used as a substrate. K0.5 and Vmax values of the partially purified endoglucanase were 7.7 mg/ml and 25 ± 0.9 U/mg protein, respectively. The enzyme was quite stable over a broad range of pH (2.0–9.0) at 4 °C. When it was incubated at temperatures between 20 °C and 60 °C for 12 h, it conserved much of its original activity (over 40%). The activity of the enzyme increased by 234 ± 3.6% in the presence of 1 mM Mn2+. The endoglucanase was inhibited by EDTA, PMSF, β-ME and DDT. In conclusion, pH and thermal stability of the L. flaccida endoglucanase could make it useful for industrial purposes.  相似文献   
397.
A cement production planning system is expected to minimize energy costs. Further, such a system needs to be as autonomous as possible to decrease time loss during the communication between related departments of the plant. Hence, in this paper, we present a multi-agent system (MAS) in which software agents work collaboratively in order to assist production, planning and sales departments of a cement plant for the generation of cost-effective cement production plans. Implemented system was deployed and actively used inside one of the plants of a leading cement company in Turkey. Evaluation result shows that the utilization of the proposed system caused a significant energy cost saving. Moreover, workers in the planning department of the cement plant saved approximately 75% of their working hour by using the system. Total workload of the employees (including all departments) decreased to its half.  相似文献   
398.
In this study, manganese ferrite (MnFe2O4) nanoparticles were produced through flame spray pyrolysis (FSP). To investigate the effects of heat treatment, the nanoparticles were annealed between 400 and 650°C for 4 h in air in a comparative manner. The structural, chemical, morphological, and magnetic properties of the nanoparticles were evaluated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), dynamic light scattering (DLS), and vibrating sample magnetometry (VSM), respectively. The XRD results showed that the nanoparticles synthesized by the FSP method exhibited the MnFe2O4 spinel ferrite structure. The annealing process led to the decomposition of MnFe2O4 into various phases. According to the morphological analysis, the as-synthesized particles were hemispherical–cubic in shape and had an average particle size of less than 100 nm. In addition, the chemical bond structures of the nanoparticles were confirmed in detail by XPS elemental analysis. The highest saturation magnetization was recorded as 33.50 emu/g for the as-produced nanoparticles. The saturation magnetization of the nanoparticles decreased with increasing annealing temperature, while coercivity increased.  相似文献   
399.
Universal Access in the Information Society - Mobile health is a rapidly emerging topic due to technological advances, especially in mobile computing and communication technologies. Increased...  相似文献   
400.
Clean Technologies and Environmental Policy - A large part of the electricity generation is from imported fossil fuels, which makes Turkey heavily dependent on fossil fuels. For this reason, Turkey...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号