首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   0篇
电工技术   2篇
机械仪表   7篇
轻工业   1篇
无线电   88篇
一般工业技术   4篇
冶金工业   2篇
自动化技术   11篇
  2017年   1篇
  2012年   6篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   7篇
  2007年   7篇
  2006年   7篇
  2005年   11篇
  2004年   8篇
  2003年   9篇
  2002年   6篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   4篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1958年   1篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
71.
Starting from any two given multiresolution analyses of L2 , {Vj1}j∈Z and {Vj2}j∈Z, we construct biorthogonal wavelet bases that are associated with this chosen pair of multiresolutions. Thus, our construction method takes a point of view opposite to the one of Cohen-Daubechies-Feauveau (1992), which starts from a well-choosen pair of biorthogonal discrete filters. In our construction, the necessary and sufficient condition is the nonperpendicularity of the multiresolutions  相似文献   
72.
In this paper, we propose an algorithm for automated segmentation of midsagittal brain MR images. First, we apply thresholding to obtain binary images. From the binary images, we locate some landmarks. Based on the landmarks and anatomical information, we preprocess the binary images, which substantially simplifies the subsequent operations. To separate regions what are incorrectly merged after this initial segmentation, a new connectivity-based threshold algorithm is proposed. Assuming that some prior information about the general shape and location of objects is available, the algorithm finds a boundary between two regions using the path connection algorithm and changing the threshold adaptively. In order to test the robustness of the proposed algorithm we applied the algorithm to 120 midsagittal brain images and obtained satisfactory results.  相似文献   
73.
This paper deals with fast image and video segmentation using active contours. Region-based active contours using level sets are powerful techniques for video segmentation, but they suffer from large computational cost. A parametric active contour method based on B-Spline interpolation has been proposed in to highly reduce the computational cost, but this method is sensitive to noise. Here, we choose to relax the rigid interpolation constraint in order to robustify our method in the presence of noise: by using smoothing splines, we trade a tunable amount of interpolation error for a smoother spline curve. We show by experiments on natural sequences that this new flexibility yields segmentation results of higher quality at no additional computational cost. Hence, real-time processing for moving objects segmentation is preserved.  相似文献   
74.
In this paper, an overview with unification of techniques that deploy the wavelet transform in the spatial domain for the analysis of functional magnetic resonance imaging (fMRI) is presented.  相似文献   
75.
Magnetic resonance spectroscopy imaging (MRSI) is an attractive tool for medical imaging. However, its practical use is often limited by the intrinsic low spatial resolution and long acquisition time. Spectral localization by imaging (SLIM) has been proposed as a non-Fourier reconstruction algorithm that incorporates spatial a priori information about spectroscopically uniform compartments. Unfortunately, the influence of the magnetic field inhomogeneity--in particular, the susceptibility effects at tissues' boundaries--undermines the validity of the compartmental model. Therefore, we propose BSLIM as an extension of SLIM with field inhomogeneity compensation. A B0-field inhomogeneity map, which can be acquired rapidly and at high resolution, is used by the new algorithm as additional a priori information. We show that the proposed method is distinct from the generalized SLIM (GSLIM) framework. Experimental results of a two-compartment phantom demonstrate the feasibility of the method and the importance of inhomogeneity compensation.  相似文献   
76.
This paper introduces a new approach to orthonormal wavelet image denoising. Instead of postulating a statistical model for the wavelet coefficients, we directly parametrize the denoising process as a sum of elementary nonlinear processes with unknown weights. We then minimize an estimate of the mean square error between the clean image and the denoised one. The key point is that we have at our disposal a very accurate, statistically unbiased, MSE estimate--Stein's unbiased risk estimate--that depends on the noisy image alone, not on the clean one. Like the MSE, this estimate is quadratic in the unknown weights, and its minimization amounts to solving a linear system of equations. The existence of this a priori estimate makes it unnecessary to devise a specific statistical model for the wavelet coefficients. Instead, and contrary to the custom in the literature, these coefficients are not considered random anymore. We describe an interscale orthonormal wavelet thresholding algorithm based on this new approach and show its near-optimal performance--both regarding quality and CPU requirement--by comparing it with the results of three state-of-the-art nonredundant denoising algorithms on a large set of test images. An interesting fallout of this study is the development of a new, group-delay-based, parent-child prediction in a wavelet dyadic tree.  相似文献   
77.
By interpreting the Green-function reproduction property of exponential splines in signal processing terms, we uncover a fundamental relation that connects the impulse responses of allpole analog filters to their discrete counterparts. The link is that the latter are the B-spline coefficients of the former (which happen to be exponential splines). Motivated by this observation, we introduce an extended family of cardinal splines-the generalized E-splines-to generalize the concept for all convolution operators with rational transfer functions. We construct the corresponding compactly supported B-spline basis functions, which are characterized by their poles and zeros, thereby establishing an interesting connection with analog filter design techniques. We investigate the properties of these new B-splines and present the corresponding signal processing calculus, which allows us to perform continuous-time operations, such as convolution, differential operators, and modulation, by simple application of the discrete version of these operators in the B-spline domain. In particular, we show how the formalism can be used to obtain exact, discrete implementations of analog filters. Finally, we apply our results to the design of hybrid signal processing systems that rely on digital filtering to compensate for the nonideal characteristics of real-world analog-to-digital (A-to-D) and D-to-A conversion systems.  相似文献   
78.
Complete parameterization of piecewise-polynomial interpolation kernels   总被引:1,自引:0,他引:1  
Every now and then, a new design of an interpolation kernel appears in the literature. While interesting results have emerged, the traditional design methodology proves laborious and is riddled with very large systems of linear equations that must be solved analytically. We propose to ease this burden by providing an explicit formula that can generate every possible piecewise-polynomial kernel given its degree, its support, its regularity, and its order of approximation. This formula contains a set of coefficients that can be chosen freely and do not interfere with the four main design parameters; it is thus easy to tune the design to achieve any additional constraints that the designer may care for.  相似文献   
79.
A review of wavelets in biomedical applications   总被引:26,自引:0,他引:26  
We present an overview of the various uses of the wavelet transform (WT) in medicine and biology. We start by describing the wavelet properties that are the most important for biomedical applications. In particular we provide an interpretation of the the continuous wavelet transform (CWT) as a prewhitening multiscale matched filter. We also briefly indicate the analogy between the WT and some of the the biological processing that occurs in the early components of the auditory and visual system. We then review the uses of the WT for the analysis of 1-D physiological signals obtained by phonocardiography, electrocardiography (ECG), mid electroencephalography (EEG), including evoked response potentials. Next, we provide a survey of wavelet developments in medical imaging. These include biomedical image processing algorithms (e.g., noise reduction, image enhancement, and detection of microcalcifications in mammograms), image reconstruction and acquisition schemes (tomography, and magnetic resonance imaging (MRI)), and multiresolution methods for the registration and statistical analysis of functional images of the brain (positron emission tomography (PET) and functional MRI (fMRI)). In each case, we provide the reader with same general background information and a brief explanation of how the methods work  相似文献   
80.
A note on cubic convolution interpolation   总被引:6,自引:0,他引:6  
We establish a link between classical osculatory interpolation and modern convolution-based interpolation and use it to show that two well-known cubic convolution schemes are formally equivalent to two osculatory interpolation schemes proposed in the actuarial literature about a century ago. We also discuss computational differences and give examples of other cubic interpolation schemes not previously studied in signal and image processing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号