首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   0篇
电工技术   2篇
机械仪表   7篇
轻工业   1篇
无线电   88篇
一般工业技术   4篇
冶金工业   2篇
自动化技术   11篇
  2017年   1篇
  2012年   6篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   7篇
  2007年   7篇
  2006年   7篇
  2005年   11篇
  2004年   8篇
  2003年   9篇
  2002年   6篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   4篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1958年   1篇
排序方式: 共有115条查询结果,搜索用时 0 毫秒
71.
In this paper, an overview with unification of techniques that deploy the wavelet transform in the spatial domain for the analysis of functional magnetic resonance imaging (fMRI) is presented.  相似文献   
72.
Magnetic resonance spectroscopy imaging (MRSI) is an attractive tool for medical imaging. However, its practical use is often limited by the intrinsic low spatial resolution and long acquisition time. Spectral localization by imaging (SLIM) has been proposed as a non-Fourier reconstruction algorithm that incorporates spatial a priori information about spectroscopically uniform compartments. Unfortunately, the influence of the magnetic field inhomogeneity--in particular, the susceptibility effects at tissues' boundaries--undermines the validity of the compartmental model. Therefore, we propose BSLIM as an extension of SLIM with field inhomogeneity compensation. A B0-field inhomogeneity map, which can be acquired rapidly and at high resolution, is used by the new algorithm as additional a priori information. We show that the proposed method is distinct from the generalized SLIM (GSLIM) framework. Experimental results of a two-compartment phantom demonstrate the feasibility of the method and the importance of inhomogeneity compensation.  相似文献   
73.
Snakuscules.   总被引:1,自引:0,他引:1  
A snakuscule (a minuscule snake) is the simplest active contour that we were able to design while keeping the quintessence of traditional snakes: an energy term governed by the data, and a regularization term. Our construction is an area-based snake, as opposed to curve-based snakes. It is parameterized by just two points, thus further easing requirements on the optimizer. Despite their ultimate simplicity, snakuscules retain enough versatility to be employed for solving various problems such as cell counting and segmentation of approximately circular features. In this paper, we detail the design process of a snakuscule and illustrate its usefulness through practical examples. We claim that our didactic intentions are well served by the simplicity of snakuscules.  相似文献   
74.
Starting from any two given multiresolution analyses of L2 , {Vj1}j∈Z and {Vj2}j∈Z, we construct biorthogonal wavelet bases that are associated with this chosen pair of multiresolutions. Thus, our construction method takes a point of view opposite to the one of Cohen-Daubechies-Feauveau (1992), which starts from a well-choosen pair of biorthogonal discrete filters. In our construction, the necessary and sufficient condition is the nonperpendicularity of the multiresolutions  相似文献   
75.
Shift-orthogonal wavelet bases   总被引:2,自引:0,他引:2  
Shift-orthogonal wavelets are a new type of multiresolution wavelet bases that are orthogonal with respect to translation (or shifts) within one level but not with respect to dilations across scales. We characterize these wavelets and investigate their main properties by considering two general construction methods. In the first approach, we start by specifying the analysis and synthesis function spaces and obtain the corresponding shift-orthogonal basis functions by suitable orthogonalization. In the second approach, we take the complementary view and start from the digital filterbank. We present several illustrative examples, including a hybrid version of the Battle-Lemarie (1987, 1988) spline wavelets. We also provide filterbank formulas for the fast wavelet algorithm. A shift-orthogonal wavelet transform is closely related to an orthogonal transform that uses the same primary scaling function; both transforms have essentially the same approximation properties. One experimentally confirmed benefit of relaxing the interscale orthogonality requirement is that we can design wavelets that decay faster than their orthogonal counterpart  相似文献   
76.
A note on cubic convolution interpolation   总被引:6,自引:0,他引:6  
We establish a link between classical osculatory interpolation and modern convolution-based interpolation and use it to show that two well-known cubic convolution schemes are formally equivalent to two osculatory interpolation schemes proposed in the actuarial literature about a century ago. We also discuss computational differences and give examples of other cubic interpolation schemes not previously studied in signal and image processing.  相似文献   
77.
Digital analysis and processing of signals inherently relies on the existence of methods for reconstructing a continuous-time signal from a sequence of corrupted discrete-time samples. In this paper, a general formulation of this problem is developed that treats the interpolation problem from ideal, noisy samples, and the deconvolution problem in which the signal is filtered prior to sampling, in a unified way. The signal reconstruction is performed in a shift-invariant subspace spanned by the integer shifts of a generating function, where the expansion coefficients are obtained by processing the noisy samples with a digital correction filter. Several alternative approaches to designing the correction filter are suggested, which differ in their assumptions on the signal and noise. The classical deconvolution solutions (least-squares, Tikhonov, and Wiener) are adapted to our particular situation, and new methods that are optimal in a minimax sense are also proposed. The solutions often have a similar structure and can be computed simply and efficiently by digital filtering. Some concrete examples of reconstruction filters are presented, as well as simple guidelines for selecting the free parameters (e.g., regularization) of the various algorithms.  相似文献   
78.
We introduce a three-dimensional (3-D) parametric active contour algorithm for the shape estimation of DNA molecules from stereo cryo-electron micrographs. We estimate the shape by matching the projections of a 3-D global shape model with the micrographs; we choose the global model as a 3-D filament with a B-spline skeleton and a specified radial profile. The active contour algorithm iteratively updates the B-spline coefficients, which requires us to evaluate the projections and match them with the micrographs at every iteration. Since the evaluation of the projections of the global model is computationally expensive, we propose a fast algorithm based on locally approximating it by elongated blob-like templates. We introduce the concept of projection-steerability and derive a projection-steerable elongated template. Since the two-dimensional projections of such a blob at any 3-D orientation can be expressed as a linear combination of a few basis functions, matching the projections of such a 3-D template involves evaluating a weighted sum of inner products between the basis functions and the micrographs. The weights are simple functions of the 3-D orientation and the inner-products are evaluated efficiently by separable filtering. We choose an internal energy term that penalizes the average curvature magnitude. Since the exact length of the DNA molecule is known a priori, we introduce a constraint energy term that forces the curve to have this specified length. The sum of these energies along with the image energy derived from the matching process is minimized using the conjugate gradients algorithm. We validate the algorithm using real, as well as simulated, data and show that it performs well.  相似文献   
79.
This paper deals with fast image and video segmentation using active contours. Region-based active contours using level sets are powerful techniques for video segmentation, but they suffer from large computational cost. A parametric active contour method based on B-Spline interpolation has been proposed in to highly reduce the computational cost, but this method is sensitive to noise. Here, we choose to relax the rigid interpolation constraint in order to robustify our method in the presence of noise: by using smoothing splines, we trade a tunable amount of interpolation error for a smoother spline curve. We show by experiments on natural sequences that this new flexibility yields segmentation results of higher quality at no additional computational cost. Hence, real-time processing for moving objects segmentation is preserved.  相似文献   
80.
Generalized Daubechies Wavelet Families   总被引:3,自引:0,他引:3  
We present a generalization of the orthonormal Daubechies wavelets and of their related biorthogonal flavors (Cohen-Daubechies-Feauveau, 9/7). Our fundamental constraint is that the scaling functions should reproduce a predefined set of exponential polynomials. This allows one to tune the corresponding wavelet transform to a specific class of signals, thereby ensuring good approximation and sparsity properties. The main difference with the classical construction of Daubechies is that the multiresolution spaces are derived from scale-dependent generating functions. However, from an algorithmic standpoint, Mallat's fast wavelet transform algorithm can still be applied; the only adaptation consists in using scale-dependent filter banks. Finite support ensures the same computational efficiency as in the classical case. We characterize the scaling and wavelet filters, construct them and show several examples of the associated functions. We prove that these functions are square-integrable and that they converge to their classical counterparts of the corresponding order.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号