The molecular mechanisms of sleep cycle integration at the beginning and the end of the inactive period are not clear. Sleep cycles with a predominance of deep slow-wave sleep (SWS) seem to be associated with accelerated protein synthesis in the brain. The inducible Hsp70 chaperone corrects protein conformational changes and has protective properties. This research explores (1) whether the Hspa1 gene encoding Hsp70 protein activates during the daily rapid-eye-movement sleep (REMS) maximum, and (2) whether a lower daily deep SWS maximum affects the Hspa1 expression level during the subsequent REMS. Combining polysomnography in male Wistar rats, RT-qPCR, and Western blotting, we reveal a three-fold Hspa1 upregulation in the nucleus reticularis pontis oralis, which regulates REMS. Hspa1 expression increases during the daily REMS maximum, 5–7 h after the natural peak of deep SWS. Using short-term selective REMS deprivation, we demonstrate that REMS rebound after deprivation exceeds the natural daily maximum, but it is not accompanied by Hspa1 upregulation. The results suggest that a high proportion of deep SWS, usually observed after sleep onset, is a necessary condition for Hspa1 upregulation during subsequent REMS. The data obtained can inform the understanding of the molecular mechanisms integrating SWS and REMS and key biological function(s) of sleep. 相似文献
Magnetic and relativistic effects in uranium catalysts, the movement of charged particles under the effect of a uniform electric field and uniform magnetic field were studied in the paper. We have considered various mechanisms oscillating reactions (Models Jabotinsky-Korzukhina, Brusselator, Oregonator and Advanced Oregonator). The mechanisms of the motion of charged particles under the influence of an electric field and a uniform magnetic field were proposed. 相似文献
Ag/ZnO nanocomposites were developed by a plasma-assisted approach. The adopted strategy exploits the advantages of Plasma Enhanced-Chemical Vapor Deposition (PE-CVD) for the growth of columnar ZnO arrays on Si(100) and Al2O3 substrates, in synergy with the infiltration power of the Radio Frequency (RF)-sputtering technique for the subsequent dispersion of different amounts of Ag nanoparticles (NPs). The resulting composites, both as-prepared and after annealing in air, were thoroughly characterized with particular attention on their morphological organization, structure and composition. For the first time, the above systems have been used as catalysts in the production of hydrogen by photo-reforming of alcoholic solutions, yielding a stable H2 evolution even by the sole use of simulated solar radiation. In addition, Ag/ZnO nanocomposites presented an excellent response in the gas-phase detection of H2, opening attractive perspectives for advanced technological applications. 相似文献
This paper examines the evaporation rate through the interface of a evaporating—convecting non-isothermal cylindrical column (liquid bridge). The liquid phase is subject to a vigorous thermocapillary convection. Experiments were performed in a wide range of the imposed temperature difference. The obtained data are compared to a theoretical model of mass transport that does not account for the bulk fluid flow. The analytical results obtained for the real experimental conditions reveal an important role of the convective heat and mass transport in evaporization. The convective process is found responsible for enhancing the evaporation rate by several times with respect to the conductive regime. 相似文献
The aim of the paper is to investigate the relative importanceof international vis-à-vis national technological linkagesfor international competitiveness for 19 industrial sectors.We estimate a dynamic model with an autoregressive structurein the dependent variable. In the paper competitiveness is capturedboth by cost competitiveness and by technological competitiveness.The main result is that while national linkages have a positiveimpact on the trade balance in several sectors (mostly scaleintensive and specialised suppliers), this is not the case forinternational linkages. 相似文献
This report describes the mechanical, thermal and biological characterisation of a solid free form microfabricated carbon nanotube-polycaprolactone composite, in which both the quantity of nanotubes in the matrix as well as the scaffold design were varied in order to tune the mechanical properties of the material. The creep and stress relaxation behaviour of the composite material was analysed to identify an optimal composition for bone tissue engineering. Moreover, the morphology and viability of osteoblast-like cells (MG63) on composite scaffolds were analysed using scanning electron microscopy and MTT assays. Our data demonstrate that by changing the ratio of CNT to PCL, the elastic modulus of the nanocomposite can be varied between 10 and 75 MPa. In this range, the geometry of the scaffold can be used to finely tune its stiffness. However our PCL-CNT nanocomposites were able to sustain osteoblast proliferation and modulate cell morphology. Thus we show the potential of custom designed CNT nanocomposites for bone tissue engineering. 相似文献
Proton conductivity, morphology, phase composition and mechanical properties of (1-x)CsH2PO4-xp(VDF/HFP) (x?=?0.05–0.25, weight ratio) polymer electrolytes were investigated for the first time. The chemical interaction of the organic matrix and acid salt was not observed and crystal structure of CsH2PO4 was preserved. A method for the synthesis of thin membranes with uniform distribution of the components was proposed. Thin flexible membranes with uniform distribution of sub-micrometer CsH2PO4 particles in the polymer membranes and improved hydrolytic stability were obtained firstly by using a bead mill. The mechanical strength of the hybrid polymer compounds was determined using the Vickers microhardness measurements. Proton conductivity in the (1-x)CsH2PO4-xp(VDF/HFP) electrolytes decreases monotonically with x increase due to the «conductor–insulator» percolation. Nevertheless, the values of proton conductivity remain sufficiently high, and along with small thickness, flexibility, improved mechanical and hydrophobic properties, it makes polymer electrolytes based on CsH2PO4 promising for membranes of medium-temperature fuel cells.
The efficiency of a hemodialyzer is largely dependent on its ability to facilitate diffusion, as this is the main mechanism by which small solutes are removed. The diffusion process can be impaired if there is a mismatch between blood and dialysate flow distribution in the dialyzer. The objective of the paper was to study the impact of different fiber bundle configurations on blood and dialysate flow distribution and urea clearances. The Optiflux 200 NR hemodialyzer was studied and the standard F 80 A hemodialyzer was used as a control for the study. Six dialyzers of each type were studied in vitro in the radiology department utilizing a new generation of helical computed tomography (CT) scan following contrast medium injection into the blood and dialysate compartment. Dynamic sequential imaging of longitudinal sections of the dialyzer was undertaken to detect flow distribution, average and peak velocities, and calculate wall shear rates. Six patients were dialyzed with 2 different dialyzers in random consecutive sequence. In these patients, 2 consecutive dialyses were carried out with identical operational parameters (Qb = 300 mL/min, Qd = 500 mL/min). In each session, blood and dialysate side urea clearances were measured at 30 and 150 min of treatment. Macroscopic and densitometrical analysis revealed that flow distribution was most homogeneous in the dialyzer with a new bundle configuration. Significantly increased urea clearances (p < 0.001) were seen with the Optiflux dialyzer compared with the standard dialyzer. In conclusion, more homogeneous dialysate blood and dialysate flow distribution and improved small solute clearances can be achieved by modifying the configuration of the filter bundle. These effects are achieved probably as a result of reduced blood to dialysate mismatch with reduction of flow channeling. The used radiological technique allows detailed flow distribution analysis and has the potential for testing future modifications to dialyzer design. 相似文献
Developing multi-disciplinary products presents cross-disciplinary problems that are difficult to predict and to solve. Unfortunately, those cross-disciplinary problems are often discovered only at a later stage of the design through physical prototypes and can lead to modification of the conceptual design of a product. This is extremely costly and time consuming. This paper describes a new software tool, a Design Interference Detector (DID), which based on qualitative reasoning infers possible problematic physical phenomena that may appear in a design. However, qualitative reasoning techniques often reveal a shortcoming of generating too many negligible solutions. This is a burden to the designer and makes qualitative reasoning practically unusable. Therefore, we developed two filtering methods that filter out such negligible solutions and highlight only potential cross-disciplinary problems. DID with these filtering methods aims particularly at supporting redesign of complex multi-disciplinary products. The paper analyzes advantages and limitations of the filtering methods through a case study. 相似文献
We studied the effect of annealing on the giant magnetoimpedance (GMI) effect, magnetic domain wall dynamics, and magnetic properties of amorphous iron (Fe) and cobalt (Co)-based microwires prepared by the Taylor–Ulitovsky technique. We observed that the properties can be tailored by controlling the magnetoelastic anisotropy of CoFeBSiC microwires during wire formation and also controlling the magnetic anisotropy by further heat treatment. A high GMI effect has been observed in the as-prepared Co-based microwires. High domain wall velocity and rectangular hysteresis loops have been observed in additionally heat-treated microwires. We observed increasing of the wall velocity under stress in some annealed samples. We demonstrated that, for certain annealing conditions, we can observe coexistence of the GMI effect and magnetic domain wall propagation in the same sample. 相似文献