In recent times, the images and videos have emerged as one of the most important information source depicting the real time scenarios. Digital images nowadays serve as input for many applications and replacing the manual methods due to their capabilities of 3D scene representation in 2D plane. The capabilities of digital images along with utilization of machine learning methodologies are showing promising accuracies in many applications of prediction and pattern recognition. One of the application fields pertains to detection of diseases occurring in the plants, which are destroying the widespread fields. Traditionally the disease detection process was done by a domain expert using manual examination and laboratory tests. This is a tedious and time consuming process and does not suffice the accuracy levels. This creates a room for the research in developing automation based methods where the images captured through sensors and cameras will be used for detection of disease and control its spreading. The digital images captured from the field's forms the dataset which trains the machine learning models to predict the nature of the disease. The accuracy of these models is greatly affected by the amount of noise and ailments present in the input images, appropriate segmentation methodology, feature vector development and the choice of machine learning algorithm. To ensure the high rated performance of the designed system the research is moving in a direction to fine tune each and every stage separately considering their dependencies on subsequent stages. Therefore the most optimum solution can be obtained by considering the image processing methodologies for improving the quality of image and then applying statistical methods for feature extraction and selection. The training vector thus developed is capable of presenting the relationship between the feature values and the target class. In this article, a highly accurate system model for detecting the diseases occurring in citrus fruits using a hybrid feature development approach is proposed. The overall improvement in terms of accuracy is measured and depicted. 相似文献
Electrical conductivity, thermoelectric power and dielectric constant of a Gd2Ti2O7 single crystal have been studied in the temperature range 300–1000 K. Gd2Ti2O7 is found to be an-type semiconductor with energy band gap 1.5 eV. It exhibits an extrinsic nature up to 675 K and an intrinsic nature above
675 K. The thermoelectric power increases with temperature in the region 300–675 K whereas it decreases with temperature in
the region 675–1000 K. The dielectric constant increases slowly in the temperature range 300–675 K but this increase becomes
fast in the temperature range 675–1000 K. 相似文献
The samples of the series Co1+ySnyFe2- 2y- xCrxO4 ferrites with x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and y = 0.05, were prepared by the usual double sintering ceramic technique. The single- phase spinel structure of the samples was confirmed by using X- ray diffractometry technique. The lattice parameter ’a’ with an accuracy of ± 0.002 Å were determined using Bragg peaks of XRD pattern. The lattice parameter ’a’ decreases with concentration, x, which is due to the difference in the ionic radii of Cr3+ and Fe3+ ions. The X- ray intensity calculations were carried out in order to determine the possible cation distribution amongst tetrahedral (A) and octahedral [B] sites. The X- ray intensity calculations show Cr3+ ions occupying B site. The saturation magnetization, σs, and magneton number, nB (the saturation magnetization per formula unit), measured at 300 K determined from high field hysteresis loop technique decrease with increase in concentration, x, suggesting a decrease in ferrimagnetic behaviour. Thermal variation of low field a.c. susceptibility measurements from room temperature to about 800 K exhibits almost normal ferrimagnetic behaviour and the Curie temperature, TC determined from a.c. susceptibility data decreases with increase in x.
AC-impedance spectroscopic studies in the temperature range of 30–400 °C are carried out on solid solutions of lead magnesium niobate (PMN) with lead titanate (PT) and lead zirconate (PZ), both of them in the 65/35 atomic ratio. For PMN–PT this corresponds to the morphotropic phase boundary composition (with normal ferroelectric behaviour), and for PMN–PZ it is near the phase boundary between normal ferroelectric and relaxor ferroelectric compositions. The variation of dielectric permittivity with temperature at different frequencies shows normal ferroelectric and relaxor-like dependence for PMN–PT and PMN–PZ, respectively. Temperature-dependent spectroscopic modulus plots reveal a much broader peak for PMN–PZ compared to that for PMN–PT, which is consistent with the dielectric behaviour. PMN–PT shows nearly ideal Debye behaviour below Tm (the temperature of the permittivity maximum) and the behaviour departs from ideality above Tm, whereas non-ideal Debye behaviour is seen both below and above Tm for PMN–PZ. Complex modulus plots fit well with two depressed semicircles and three depressed semicircles, respectively, for PMN–PT and PMN–PZ. The relaxation observed in the spectroscopic plots around 1 MHz for PMN–PT has been assigned to polarisation relaxation expected for normal-sized domains. No such relaxation could be observed for PMN–PZ around 1 MHz because of the mesoscopic domain sizes. 相似文献
Microgravity, as a different environment, has been shown to affect plant growth and development (Sievers et al. 1996; Sack 1997). In the present study, effects of slow clinorotation (2 rpm) on growth and chlorophyll content in rice (variety: PRH-10) seedlings were investigated. Rice seeds were clinorotated continuously for 3, 5 and 7 days under ambient conditions. Root and shoot lengths and weights of rice seedlings were measured on the third, fifth and seventh day. Chlorophyll was extracted using N, N-Dimethylformamide (DMF). Absorption and fluorescence spectra of chlorophyll were recorded. Chlorophyll a, chlorophyll b and total chlorophyll contents were calculated from absorption spectra using Arnon’s method. Results showed an increase in root and shoot lengths in clinorotated samples. Similar results were obtained for root and shoot weights. Absorption spectra of chlorophyll showed no shift in the absorption peaks. Chlorophyll content was increased in clinorotated samples as compared to the controls. Interestingly, the difference between chlorophyll content in control and clinorotated samples decreased as the number of days of clinorotation increased. Chlorophyll a/b ratio was lowered in clinorotated samples as compared to the controls. These results suggest that slow clinorotation (2 rpm) affects plant growth and chlorophyll content in rice seedlings. 相似文献
The variance of least squares estimators for the parameter estimation of a damped sinusoidal process is analyzed, based on first-order perturbation. Analytical expressions for the variances of the frequency, damping factor, amplitude, and phase estimators are derived. Explicit expressions are given for both damped and undamped single-mode cases. The effect of mode separation on the accuracy is investigated through the two-mode case. The dependence of the variances on number of data points, model order, signal-to-noise ratio, and mode separation is investigated, both analytically and numerically, for practical applications. Extensive Monte Carlo simulation results are given to verify, enhance, and illustrate the analytical expressions 相似文献
Polyadenylation at the 3' terminus has long been considered a specific feature of mRNA and a few other unstable RNA species. Here we show that stable RNAs in Escherichia coli can be polyadenylated as well. RNA molecules with poly(A) tails are the major products that accumulate for essentially all stable RNA precursors when RNA maturation is slowed because of the absence of processing exoribonucleases; poly(A) tails vary from one to seven residues in length. The polyadenylation process depends on the presence of poly(A) polymerase I. A stochastic competition between the exoribonucleases and poly(A) polymerase is proposed to explain the accumulation of polyadenylated RNAs. These data indicate that polyadenylation is not unique to mRNA, and its widespread occurrence suggests that it serves a more general function in RNA metabolism. 相似文献
The synthesis of a new PEG based hyperbranched copolymer of poly(ethylene glycol) methyl ether methacrylate-co-ethylene glycol dimethacrylate (PEGMEMA-co-EGDMA) was achieved via a one-step in situ deactivation enhanced atom transfer radical polymerization (DE-ATRP). Then, hollow PEG based nanospheres were fabricated from this polymer using a solvent evaporation method and post-stabilisation strategy. Furthermore, the analysis using a cellular metabolic activity assay proved that the copolymer did not affect cellular metabolism, indicating that this PEG based polymeric nanosphere has potential for use in drug delivery applications. 相似文献