首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   0篇
电工技术   5篇
机械仪表   1篇
无线电   50篇
一般工业技术   4篇
冶金工业   7篇
原子能技术   1篇
自动化技术   22篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2004年   5篇
  2003年   7篇
  2002年   4篇
  2001年   7篇
  2000年   5篇
  1999年   9篇
  1998年   11篇
  1997年   7篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   6篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
21.
In recent years, advances in computer technology and a significant increase in the accuracy of medical imaging have made it possible to develop systems that can assist the clinician in diagnosis, planning, and treatment. This paper deals with an area that is generally referred to as computer-assisted surgery, image-directed surgery, or image-guided surgery. We report the research, development, and clinical validation performed since January 1996 in the European Applications in Surgical Interventions (EASI) project, which is funded by the European Commission in their “4th Framework Telematics Applications for Health” program. The goal of this project is the improvement of the effectiveness and quality of image-guided neurosurgery of the brain and image-guided vascular surgery of abdominal aortic aneurysms, while at the same time reducing patient risks and overall cost. We have developed advanced prototype systems for preoperative surgical planning and intraoperative surgical navigation, and we have extensively clinically validated these systems. The prototype systems and the clinical validation results are described in this paper  相似文献   
22.
We propose a computational method for segmenting topological subdimensional point-sets in scalar images of arbitrary spatial dimensions. The technique is based on calculating the homotopy class defined by the gradient vector in a subdimensional neighborhood around every image point. This neighborhood is defined as the linear envelope spawned over a given subdimensional vector frame. In the simplest case where the rank of this frame is maximal, we obtain a technique for localizing the critical points. We consider, in particular, the important case of frames formed by an arbitrary number of the first largest by absolute value principal directions of the Hessian. The method then segments positive and and negative ridges as well as other types of critical surfaces of different dimensionalities. The signs of the eigenvalues associated to the principal directions provide a natural labeling of the critical subsets. The result, in general, is a constructive definition of a hierarchy of point-sets of different dimensionalities linked by inclusion relations. Because of its explicit computational nature, the method gives a fast way to segment height ridges or edges in different applications. The defined topological point-sets are connected manifolds and, therefore, our method provides a tool for geometrical grouping using only local measurements. We have demonstrated the grouping properties of our construction by presenting two different cases where an extra image coordinate is introduced  相似文献   
23.
A framework to analyze the propagation of measurement noise through backprojection reconstruction algorithms in electrical impedance tomography (EIT) is presented. Two measurement noise sources were considered: noise in the current drivers and in the voltage detectors. The influence of the acquisition system architecture (serial/semi-parallel) is also discussed. Three variants of backprojection reconstruction are studied: basic (unweighted), weighted and exponential backprojection. The results of error propagation theory have been compared with those obtained from simulated and experimental data. This comparison shows that the approach provides a good estimate of the reconstruction error variance. It is argued that the reconstruction error in EIT images obtained via backprojection can be approximately modeled as a spatially nonstationary Gaussian distribution. This methodology allows us to develop a spatial characterization of the reconstruction error in EIT images.  相似文献   
24.
Singular points of scalar images in any dimensions are classified by a topological number. This number takes integer values and can efficiently be computed as a surface integral on any closed hypersurface surrounding a given point. A nonzero value of the topological number indicates that in the corresponding point the gradient field vanishes, so the point is singular. The value of the topological number classifies the singularity and extends the notion of local minima and maxima in one-dimensional signals to the higher dimensional scalar images. Topological numbers are preserved along the drift of nondegenerate singular points induced by any smooth image deformation. When interactions such as annihilations, creations or scatter of singular points occurs upon a smooth image deformation, the total topological number remains the same.Our analysis based on an integral method and thus is a nonperturbative extension of the order-by-order approach using sets of differential invariants for studying singular points.Examples of typical singularities in one- and two-dimensional images are presented and their evolution induced by isotropic linear diffusion of the image is studied.  相似文献   
25.
Geodesic deformable models for medical image analysis   总被引:3,自引:0,他引:3  
In this paper implicit representations of deformable models for medical image enhancement and segmentation are considered. The advantage of implicit models over classical explicit models is that their topology can be naturally adapted to objects in the scene. A geodesic formulation of implicit deformable models is especially attractive since it has the energy minimizing properties of classical models. The aim of this paper is twofold. First, a modification to the customary geodesic deformable model approach is introduced by considering all the level sets in the image as energy minimizing contours. This approach is used to segment multiple objects simultaneously and for enhancing and segmenting cardiac computed tomography (CT) and magnetic resonance images. Second, the approach is used to effectively compare implicit and explicit models for specific tasks. This shows the complementary character of implicit models since in case of poor contrast boundaries or gaps in boundaries, e.g. due to partial volume effects, noise, or motion artifacts, they do not perform well, since the approach is completely data-driven  相似文献   
26.
A method for localization and segmentation of bifurcated aortic endografts in computed tomographic angiography (CTA) images is presented. The graft position is determined by detecting radiopaque markers sewn on the outside of the graft. The user indicates the first and the last marker, whereupon the remaining markers are automatically detected. This is achieved by first detecting marker-like structures through second-order scaled derivative analysis, which is combined with prior knowledge of graft shape and marker configuration. The identified marker centers approximate the graft sides and, derived from these, the central axis. The graft boundary is determined by maximizing the local gradient in the radial direction along a deformable contour passing through both sides. Three segmentation methods were tested. The first performs graft contour detection in the initial CT-slices, the second in slices that were reformatted to be orthogonal to the approximated graft axis, and the third uses the segmentation from the second method to find a more reliable approximation of the axis and subsequently performs contour detection. The methods have been applied to ten CTA images and the results were compared to manual marker indication by one observer and region growing aided segmentation by three observers. Out of a total of 266 markers, 262 were detected. Adequate approximations of the graft sides were obtained in all cases. The best segmentation results were obtained using a second iteration orthogonal to the axis determined from the first segmentation, yielding an average relative volume of overlap with the expert segmentations of 92%, while the interexpert reproducibility is 95%. The averaged difference in volume measured by the automated method and by the experts equals the difference among the experts: 3.5%.  相似文献   
27.
Blood pool agents (BPAs) for contrast-enhanced magnetic resonance angiography (CE-MRA) allow prolonged imaging during the steady state when the agent is distributed through the complete vascular system. This increases both the spatial resolution and the contrast resolution. However, simultaneous venous and arterial enhancement hampers interpretation. For the pelvic region of the vasculature, it is shown that arterial visualization in this equilibrium phase can be improved if the central arterial axis (CAA) is known. However, manually obtaining this axis is not feasible in clinical practice. Therefore, a method is presented that utilizes images acquired during the first pass of the contrast agent to find the CAA in the steady-state data with minimum user initialization. The accuracy of the resulting CAA is compared with tracings of three observers in six patient datasets. It was found that the mean difference between the semiautomatic method and the manual delineation is 1.32 mm in the steady-state data, and that the resulting CAA was always within the arterial lumen, which is an important prerequisite for both improved visualization and segmentation.  相似文献   
28.
Guide-wire tracking during endovascular interventions   总被引:2,自引:0,他引:2  
A method is presented to extract and track the position of a guide wire during endovascular interventions under X-ray fluoroscopy. The method can be used to improve guide-wire visualization in low-quality fluoroscopic images and to estimate the position of the guide wire in world coordinates. A two-step procedure is utilized to track the guide wire in subsequent frames. First, a rough estimate of the displacement is obtained using a template-matching procedure. Subsequently, the position of the guide wire is determined by fitting a spline to a feature image. The feature images that have been considered enhance line-like structures on: 1) the original images; 2) subtraction images; and 3) preprocessed images in which coherent structures are enhanced. In the optimization step, the influence of the scale at which the feature is calculated and the additional value of using directional information is investigated. The method is evaluated on 267 frames from ten clinical image sequences. Using the automatic method, the guide wire could be tracked in 96% of the frames, with a similar accuracy to three observers, although the position of the tip was estimated less accurately.  相似文献   
29.
Summary Based on a simplified model of the cochlea a one-dimensional approach (the Peterson-Bogert model) is compared with a three-dimensional one. The results appear to be in agreement provided the impedance of the partition is large. This is true for low frequencies except in the region of maximum membrane amplitude. For low frequencies, moreover, the fluid can be considered as incompressible. The influence of the viscosity is investigated by localizing the entire viscous force in a boundary layer. This layer is shown to occur in the fluid. Besides it is concluded that the rotation is approximately largest where the membrane has its maximum amplitude. This can be an explanation for the appearance of eddies at that point.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号