首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3609篇
  免费   203篇
  国内免费   14篇
电工技术   37篇
综合类   1篇
化学工业   758篇
金属工艺   73篇
机械仪表   82篇
建筑科学   160篇
矿业工程   1篇
能源动力   113篇
轻工业   239篇
水利工程   33篇
石油天然气   13篇
无线电   365篇
一般工业技术   772篇
冶金工业   423篇
原子能技术   34篇
自动化技术   722篇
  2023年   26篇
  2022年   81篇
  2021年   92篇
  2020年   78篇
  2019年   70篇
  2018年   118篇
  2017年   103篇
  2016年   115篇
  2015年   99篇
  2014年   140篇
  2013年   225篇
  2012年   219篇
  2011年   273篇
  2010年   194篇
  2009年   225篇
  2008年   209篇
  2007年   187篇
  2006年   129篇
  2005年   101篇
  2004年   98篇
  2003年   95篇
  2002年   83篇
  2001年   43篇
  2000年   52篇
  1999年   60篇
  1998年   111篇
  1997年   81篇
  1996年   61篇
  1995年   29篇
  1994年   33篇
  1993年   28篇
  1992年   30篇
  1991年   21篇
  1990年   18篇
  1989年   18篇
  1988年   23篇
  1987年   15篇
  1986年   25篇
  1985年   22篇
  1984年   18篇
  1983年   12篇
  1982年   12篇
  1981年   10篇
  1980年   17篇
  1979年   14篇
  1977年   12篇
  1976年   22篇
  1974年   12篇
  1973年   10篇
  1972年   7篇
排序方式: 共有3826条查询结果,搜索用时 15 毫秒
151.
Bread wheat is the most widely cultivated crop worldwide, used in the production of food products and a feed source for animals. Selection tools that can be applied early in the breeding cycle are needed to accelerate genetic gain for increased wheat production while maintaining or improving grain quality if demand from human population growth is to be fulfilled. Proteomics screening assays of wheat flour can assist breeders to select the best performing breeding lines and discard the worst lines. In this study, we optimised a robust LC–MS shotgun quantitative proteomics method to screen thousands of wheat genotypes. Using 6 cultivars and 4 replicates, we tested 3 resuspension ratios (50, 25, and 17 µL/mg), 2 extraction buffers (with urea or guanidine-hydrochloride), 3 sets of proteases (chymotrypsin, Glu-C, and trypsin/Lys-C), and multiple LC settings. Protein identifications by LC–MS/MS were used to select the best parameters. A total 8738 wheat proteins were identified. The best method was validated on an independent set of 96 cultivars and peptides quantities were normalised using sample weights, an internal standard, and quality controls. Data mining tools found particularly useful to explore the flour proteome are presented (UniProt Retrieve/ID mapping tool, KEGG, AgriGO, REVIGO, and Pathway Tools).  相似文献   
152.
Integrin αIIbβ3, a glycoprotein complex expressed at the platelet surface, is involved in platelet aggregation and contributes to primary haemostasis. Several integrin αIIbβ3 polymorphisms prevent the aggregation that causes haemorrhagic syndromes, such as Glanzmann thrombasthenia (GT). Access to 3D structure allows understanding the structural effects of polymorphisms related to GT. In a previous analysis using Molecular Dynamics (MD) simulations of αIIb Calf-1 domain structure, it was observed that GT associated with single amino acid variation affects distant loops, but not the mutated position. In this study, experiments are extended to Calf-1, Thigh, and Calf-2 domains. Two loops in Calf-2 are unstructured and therefore are modelled expertly using biophysical restraints. Surprisingly, MD revealed the presence of rigid zones in these loops. Detailed analysis with structural alphabet, the Proteins Blocks (PBs), allowed observing local changes in highly flexible regions. The variant P741R located at C-terminal of Calf-1 revealed that the Calf-2 presence did not affect the results obtained with isolated Calf-1 domain. Simulations for Calf-1 + Calf-2, and Thigh + Calf-1 variant systems are designed to comprehend the impact of five single amino acid variations in these domains. Distant conformational changes are observed, thus highlighting the potential role of allostery in the structural basis of GT.  相似文献   
153.
Synthetic chemicals are widely used in food, agriculture, and medicine, making chemical safety assessments necessary for environmental exposure. In addition, the rapid determination of chemical drug efficacy and safety is a key step in therapeutic discoveries. Cell-based screening methods are non-invasive as compared with animal studies. Cellular phenotypic changes can also provide more sensitive indicators of chemical effects than conventional cell viability. Array-based cell sensors can be engineered to maximize sensitivity to changes in cell phenotypes, lowering the threshold for detecting cellular responses under external stimuli. Overall, array-based sensing can provide a robust strategy for both cell-based chemical risk assessments and therapeutics discovery.  相似文献   
154.
Suspension plasma spraying (SPS) is an alternative to conventional atmospheric plasma spraying (APS) aiming at manufacturing thinner layers (i.e., 10-100 μm) due to the specific size of the feedstock particles, from a few tens of nanometers to a few micrometers. The staking of lamellae and particles, which present a diameter ranging from 0.1 to 2.0 μm and an average thickness from 20 to 300 nm, permits to manufacture finely structured layers. Moreover, it appears as a versatile process able to manufacture different coating architectures according to the operating parameters (suspension properties, injection configuration, plasma properties, spray distance, torch scan velocity, scanning step, etc.). However, the different parameters controlling the properties of the coating, and their interdependences, are not yet fully identified. Thus, the aim of this paper is, on the one hand, to better understand the influence of operating parameters on the coating manufacturing mechanisms (in particular, the plasma gas mixture effect) and, on the other hand, to produce Al2O3-ZrO2 finely structured layers with large varieties of architectures. For this purpose, a simple theoretical model was used to describe the plasma torch operating conditions at the nozzle exit, based on experimental data (mass enthalpy, arc current intensity, thermophysical properties of plasma forming gases, etc.) and the influences of the spray parameters were determined by mean of the study of sizes and shapes of spray beads. The results enabled then to reach a better understanding of involved phenomena and their interactions on the final coating architectures permitting to manufacture several types of microstructures.  相似文献   
155.
A straightforward analytical method has been developed for the determination of glyphosate and aminomethylphosphonic acid (AMPA), its major metabolite in cereals. This method entails a rapid extraction and derivatization with 9-fluorenylmethyl chloroformate followed by separation with a conventional reversed-phase rapid chromatography used in daily routine analysis and detection by electrospray ionization tandem mass spectrometry. To overcome matrix effects and compensate for any analyte losses during sample treatment, an isotopic dilution approach was used. Since 2010, the monitoring of cereals for the widely used herbicide glyphosate is obligatory to all European Union (EU)-member states, laid down in Commission Regulation (EC) No. 1213/2008. Hence, there is definitively a need for a reliable and easy-to-handle analytical method for monitoring of this compound. The proposed method can be run without having to make time-consuming changes on the equipment used for daily routine analysis. The analytical performance of the method was evaluated according to SANCO/10684/2009 criteria and demonstrated that this method is rugged and cost-effective, therefore suitable for monitoring purposes as well as legislative enforcements within the EU. The apparent recoveries of both analytes were between 97% and 113% with relative standard deviations less than 20%. The limits of quantification of glyphosate and AMPA were 0.02 mg/kg in cereal matrices. Finally, the accuracy of the method was assessed by analyzing a proficiency test material which was available from a previous round (EUPT-C4).  相似文献   
156.
The proficiency testing program in food microbiology RAEMA (Réseau d'Analyses et d'Echanges en Microbiologie des Aliments), created in 1988, currently includes 450 participating laboratories. This interlaboratory comparison establishes proficiency in detection of Salmonella and Listeria monocytogenes, as well as enumeration of aerobic micro-organisms, Enterobacteriaceae, coliforms, beta-glucuronidase-positive Escherichia coli, anaerobic sulfito-reducing bacteria, Clostridium perfringens, coagulase-positive staphylococci, and L. monocytogenes. Twice a year, five units samples are sent to participants to assess their precision and trueness for enumeration and detection of micro-organisms. Most of participating laboratories use standard or validated alternative methods, they were 50-70% in 1994 and, for 5 years, they are 95%. An increasing use of alternative methods was also observed. This phenomenon is all the more significant as standard methods are laborious and time consuming; thus, 50% of the laboratories use alternative methods for the detection of Salmonella and L. monocytogenes. More and more laboratories use ready-to-use media and although the percentage is variable according to the microflora, we can consider that, today, 50-60% of the laboratories participating to the proficiency program only use ready-to-use media. The internal quality assurance programs lead also to an increasing use of media quality controls. The impact of analytical methods on bacterial counts was assessed by grouping together the results obtained by participating laboratories during the 10 last testing schemes from 1999 to 2003. The identified significant factors influencing enumeration results are variable from one microflora to another. Some of them significantly influence many microflora: the plating method (spiral plating or not) is influential for aerobic micro-organisms, Enterobacteriaceae, coliforms, and staphylococci, the type of culture medium and the medium manufacturer is influential for aerobic micro-organisms, Enterobacteriaceae, coliforms, E. coli, anaerobic sulfito-reducing bacteria, staphylococci, and L. monocytogenes. Others are specific of some micro-organisms: the resuscitation broth for L. monocytogenes, the mode of medium preparation for staphylococci and the incubation temperature for C. perfringens. These effects lead generally to small differences of about 0.1 log10 cfu g(-1), except for the enumeration of anaerobic sulfito-reducing bacteria, where the difference reaches 0.7 log10 cfu g(-1). These results, although difficult to extrapolate to all actual situations, which associate numerous food constituents and physiological states of bacteria to detect or numerate, allow nevertheless the quantification of interlaboratory variations linked to the methods in use. The analysis of bacterial counts obtained by the laboratories participating to the RAEMA proficiency testing program allowed also to validate a formula to calculate the repeatability of bacterial counts and to estimate the between-laboratory uncertainties for the majority of micro-organisms enumerated in food microbiology. The repeatability uncertainty is only indirectly affected by the method in use but depends essentially on the number of counted colonies. On the other hand, the between-laboratory uncertainty varies with the enumeration method in use, this variability is relatively small for the enumerations calling for methods without colony confirmation, i.e. for the enumeration of aerobic micro-organisms, Enterobacteriaceae, 'total' and thermotolerant coliforms, beta-glucuronidase-positive E. coli and coagulase-positive staphylococci with the technique using the rabbit-plasma fibrinogen agar. For these methods, the average between-laboratory standard deviation is 0.17 log10 cfu g(-1). The between-laboratory uncertainty is, on the contrary, larger for more complex techniques. For the enumeration of coagulase-positive staphylococci with the Baird-Parker agar, the between-laboratory standard deviation is equal to 0.23 log10 cfu g(-1), it is equal to 0.28 log10 cfu g(-1) for the enumeration of L. monocytogenes, to 0.34 log10 cfu g(-1) for the enumeration of C. perfringens, and to 0.47 log10 cfu g(-1) for the enumeration of anaerobic sulfito-reducing bacteria.  相似文献   
157.
Candida guilliermondii (teleomorph Meyerozyma guilliermondii) is an ascomycetous species belonging to the fungal CTG clade. This yeast remains actively studied as a result of its moderate clinical importance and most of all for its potential uses in biotechnology. The aim of the present study was to establish a convenient transformation system for C. guilliermondii by developing both a methionine auxotroph recipient strain and a functional MET gene as selection marker. We first disrupted the MET2 and MET15 genes encoding homoserine‐O‐acetyltransferase and O‐acetylserine O‐acetylhomoserine sulphydrylase, respectively. The met2 mutant was shown to be a methionine auxotroph in contrast to met15 which was not. Interestingly, met2 and met15 mutants formed brown colonies when cultured on lead‐containing medium, contrary to the wild‐type strain, which develop as white colonies on this medium. The MET2 wild‐type allele was successfully used to transfer a yellow fluorescent protein (YFP) gene‐expressing vector into the met2 recipient strain. In addition, we showed that the loss of the MET2‐containing YFP‐expressing plasmid can be easily observed on lead‐containing medium. The MET2 wild‐type allele, flanked by two short repeated sequences, was then used to disrupt the LYS2 gene (encoding the α‐aminoadipate reductase) in the C. guilliermondii met2 recipient strain. The resulting lys2 mutants displayed, as expected, auxotrophy for lysine. Unfortunately, all our attempts to pop‐out the MET2 marker (following the recombination of the bordering repeat sequences) from a target lys2 locus were unsuccessful using white/brown colony colour screening. Nevertheless, this MET2 transformation/disruption system represents a new versatile genetic tool for C. guilliermondii. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
158.
A two dimensional model of bread baking was developed including, for the first time, the dependence of dough viscosity on both temperature and moisture content, the carbon dioxide dissolved from liquid water together with gas generation from yeast at the beginning of baking and the shrinkage due to dough drying. Particular attention was paid to experimental validation of both overall and local variables such as local temperature, overall mass loss, and local moisture content, overall CO2 released into the oven, and overall deformation and local expansion or shrinkage. Sensitivity studies on generation of carbon dioxide, gravity, and shrinkage are presented to discuss their influences on bread geometry, porosity (reflecting the alveolar structure) and gas pressure. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3847–3863, 2016  相似文献   
159.
This paper reports on how the blend ratio and morphology influence the mechanical, thermal, thermomechanical, and rheological properties of poly(propylene) (PP)/low density polyethylene (LDPE) blends. The blend morphology is composed of the major matrix phase and the minor phase, with subinclusions of the major matrix existing within the minor phase. Blends containing low amounts (<20 wt%) of either phase exhibit partial miscibility but the phases are immiscible at higher contents. Partial miscibility of the blends is revealed by scanning electron microscopy studies showing fibril‐like structures and confirmed by rheology. The tensile modulus of the blends decreases with increasing amounts of LDPE, but low LDPE contents exhibit positive deviation from the mixing rule of mixture due to partial compatibility. The crystallinity of PP is affected less than that of LDPE in the blends. Thermomechanical and rheological properties of neat polymers are significantly influenced by blending. The blend ratio and morphology influence impact strength and elongation at break, and the result demonstrates that the 80/20 PP/LDPE blend offers a balance among the mechanical and material properties that are essential for flexible packaging applications.

  相似文献   

160.
Herein we describe the design, multicomponent synthesis, and biological, molecular modeling and ADMET studies, as well as in vitro PAMPA‐blood–brain barrier (BBB) analysis of new tacrine–ferulic acid hybrids (TFAHs). We identified (E)‐3‐(hydroxy‐3‐methoxyphenyl)‐N‐{8[(7‐methoxy‐1,2,3,4‐tetrahydroacridin‐9‐yl)amino]octyl}‐N‐[2‐(naphthalen‐2‐ylamino)2‐oxoethyl]acrylamide (TFAH 10 n ) as a particularly interesting multipotent compound that shows moderate and completely selective inhibition of human butyrylcholinesterase (IC50=68.2 nM ), strong antioxidant activity (4.29 equiv trolox in an oxygen radical absorbance capacity (ORAC) assay), and good β‐amyloid (Aβ) anti‐aggregation properties (65.6 % at 1:1 ratio); moreover, it is able to permeate central nervous system (CNS) tissues, as determined by PAMPA‐BBB assay. Notably, even when tested at very high concentrations, TFAH 10 n easily surpasses the other TFAHs in hepatotoxicity profiling (59.4 % cell viability at 1000 μM ), affording good neuroprotection against toxic insults such as Aβ1–40, Aβ1–42, H2O2, and oligomycin A/rotenone on SH‐SY5Y cells, at 1 μM . The results reported herein support the development of new multipotent TFAH derivatives as potential drugs for the treatment of Alzheimer′s disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号