首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90170篇
  免费   1207篇
  国内免费   431篇
电工技术   870篇
综合类   2318篇
化学工业   12778篇
金属工艺   5034篇
机械仪表   3198篇
建筑科学   2254篇
矿业工程   569篇
能源动力   1422篇
轻工业   3842篇
水利工程   1313篇
石油天然气   356篇
无线电   10177篇
一般工业技术   17676篇
冶金工业   3460篇
原子能技术   325篇
自动化技术   26216篇
  2023年   68篇
  2022年   146篇
  2021年   182篇
  2020年   170篇
  2019年   166篇
  2018年   14601篇
  2017年   13504篇
  2016年   10120篇
  2015年   711篇
  2014年   431篇
  2013年   599篇
  2012年   3360篇
  2011年   9676篇
  2010年   8476篇
  2009年   5789篇
  2008年   6988篇
  2007年   7948篇
  2006年   317篇
  2005年   1359篇
  2004年   1250篇
  2003年   1296篇
  2002年   659篇
  2001年   222篇
  2000年   303篇
  1999年   167篇
  1998年   315篇
  1997年   208篇
  1996年   174篇
  1995年   138篇
  1994年   115篇
  1993年   141篇
  1992年   119篇
  1991年   119篇
  1990年   84篇
  1989年   75篇
  1988年   81篇
  1987年   75篇
  1986年   88篇
  1985年   106篇
  1984年   99篇
  1983年   95篇
  1982年   78篇
  1981年   63篇
  1978年   49篇
  1977年   62篇
  1976年   82篇
  1968年   60篇
  1966年   49篇
  1955年   64篇
  1954年   69篇
排序方式: 共有10000条查询结果,搜索用时 890 毫秒
991.
An empirical analysis was performed to compare the effectiveness of different approaches to training a set of procedural skills to a sample of novice trainees. Sixty-five participants were randomly assigned to one of the following three training groups: (1) learning-by-doing in a 3D desktop virtual environment, (2) learning-by-observing a video (show-and-tell) explanation of the procedures, and (3) trial-and-error. In each group, participants were trained on two car service procedures. Participants were recalled to perform a procedure either 2 or 4 weeks after the training. The results showed that: (1) participants trained through the virtual approach of learning-by-doing performed both procedures significantly better (i.e. p < .05 in terms of errors and time) than people of non-virtual groups, (2) the virtual training group, after a period of non-use, were more effective than non-virtual training (i.e. p < .05) in their ability to recover their skills, (3) after a (simulated) long period from the training—i.e. up to 12 weeks—people who experienced 3D environments consistently performed better than people who received other kinds of training. The results also suggested that independently from the training group, trainees’ visuospatial abilities were a predictor of performance, at least for the complex service procedure, adj R 2 = .460, and that post-training performances of people trained through virtual learning-by-doing are not affected by learning styles. Finally, a strong relationship (p < .001, R 2 = .441) was identified between usability and trust in the use of the virtual training tool—i.e. the more the system was perceived as usable, the more it was perceived as trustable to acquire the competences.  相似文献   
992.
We study an offline scheduling problem arising in demand response management in a smart grid. Consumers send in power requests with a flexible set of timeslots during which their requests can be served. For example, a consumer may request the dishwasher to operate for 1 h during the periods 8am to 11am or 2pm to 4pm. The grid controller, upon receiving power requests, schedules each request within the specified duration. The electricity cost is measured by a convex function of the load in each timeslot. The objective of the problem is to schedule all requests with the minimum total electricity cost. As a first attempt, we consider a special case in which the power requirement and the duration a for which a request needs service are both unit-size. For this problem, we present a polynomial time offline algorithm that gives an optimal solution and shows that the time complexity can be further improved if the given set of timeslots forms a contiguous interval.  相似文献   
993.
A unified variational theory is proposed for a general class of multiscale models based on the concept of Representative Volume Element. The entire theory lies on three fundamental principles: (1) kinematical admissibility, whereby the macro- and micro-scale kinematics are defined and linked in a physically meaningful way; (2) duality, through which the natures of the force- and stress-like quantities are uniquely identified as the duals (power-conjugates) of the adopted kinematical variables; and (3) the Principle of Multiscale Virtual Power, a generalization of the well-known Hill-Mandel Principle of Macrohomogeneity, from which equilibrium equations and homogenization relations for the force- and stress-like quantities are unequivocally obtained by straightforward variational arguments. The proposed theory provides a clear, logically-structured framework within which existing formulations can be rationally justified and new, more general multiscale models can be rigorously derived in well-defined steps. Its generality allows the treatment of problems involving phenomena as diverse as dynamics, higher order strain effects, material failure with kinematical discontinuities, fluid mechanics and coupled multi-physics. This is illustrated in a number of examples where a range of models is systematically derived by following the same steps. Due to the variational basis of the theory, the format in which derived models are presented is naturally well suited for discretization by finite element-based or related methods of numerical approximation. Numerical examples illustrate the use of resulting models, including a non-conventional failure-oriented model with discontinuous kinematics, in practical computations.  相似文献   
994.
Numerical weather prediction (NWP) is in a period of transition. As resolutions increase, global models are moving towards fully nonhydrostatic dynamical cores, with the local and global models using the same governing equations; therefore we have reached a point where it will be necessary to use a single model for both applications. The new dynamical cores at the heart of these unified models are designed to scale efficiently on clusters with hundreds of thousands or even millions of CPU cores and GPUs. Operational and research NWP codes currently use a wide range of numerical methods: finite differences, spectral transform, finite volumes and, increasingly, finite/spectral elements and discontinuous Galerkin, which constitute element-based Galerkin (EBG) methods. Due to their important role in this transition, will EBGs be the dominant power behind NWP in the next 10 years, or will they just be one of many methods to choose from? One decade after the review of numerical methods for atmospheric modeling by Steppeler et al. (Meteorol Atmos Phys 82:287–301, 2003), this review discusses EBG methods as a viable numerical approach for the next-generation NWP models. One well-known weakness of EBG methods is the generation of unphysical oscillations in advection-dominated flows; special attention is hence devoted to dissipation-based stabilization methods. Since EBGs are geometrically flexible and allow both conforming and non-conforming meshes, as well as grid adaptivity, this review is concluded with a short overview of how mesh generation and dynamic mesh refinement are becoming as important for atmospheric modeling as they have been for engineering applications for many years.  相似文献   
995.
In this paper, metamodeling and five well-known metaheuristic optimization algorithms were used to reduce the weight and improve crash and NVH attributes of a vehicle simultaneously. A high-fidelity full vehicle model is used to analyze peak acceleration, intrusion and component’s internal-energy under Full-Frontal, Offset-Frontal, and Side crash scenarios as well as vehicle natural frequencies. The radial basis functions method is used to approximate the structural responses. A nonlinear surrogate-based mass minimization was formulated and solved by five different optimization algorithms under crash-vibration constraints. The performance of these algorithms is investigated and discussed.  相似文献   
996.
This paper aims to design an appropriate switching law to stabilize the switched neural networks with time-varying delays when all subsystems are unstable. By using the discretized Lyapunov function approach and the extended comparison principle for impulsive systems, the stability of switched delayed neural networks composed full of unstable subsystems is analyzed and a computable sufficient condition is derived in the framework of dwell time. The effectiveness of the proposed results is illustrated by a numerical example.  相似文献   
997.
Based on advantages of basic non-negative sparse coding (NNSC) model, and considered the prior class constraint of image features, a novel NNSC model is discussed here. In this NNSC model, the sparseness criteria is selected as a two-parameter density estimation model and the dispersion ratio of within-class and between-class is used as the class constraint. Utilizing this NNSC model, image features can be extracted successfully. Further, the feature recognition task by using different classifiers can be implemented well. Simulation results prove that our NNSC model proposed is indeed effective in extracting image features and recognition task in application.  相似文献   
998.
999.
Linear discriminant analysis (LDA) is one of the most popular dimension reduction methods and has been widely used in many applications. In the last decades many LDA-based dimension reduction algorithms have been reported. Among these methods, orthogonal LDA (OLDA) is a famous one and several different implementations of OLDA have been proposed. In this paper, we propose a new and fast implementation of OLDA. Compared with the other OLDA implementations, our proposed implementation of OLDA is the fastest one when the dimensionality d is larger than the sample size n. Then, based on our proposed implementation of OLDA, we present an incremental OLDA algorithm which can accurately update the projection matrix of OLDA when new samples are added into the training set. The effectiveness of our proposed new OLDA algorithm and its incremental version are demonstrated by some real-world data sets.  相似文献   
1000.
By combining of the benefits of high-order network and TSK (Tagaki-Sugeno-Kang) inference system, Pi-Sigma network is capable to dispose with the nonlinear problems much more effectively, which means it has a compacter construction, and quicker computational speed. The aim of this paper is to present a gradient-based learning method for Pi-Sigma network to train TSK fuzzy inference system. Moreover, some strong convergence results are established based on the weak convergence outcomes, which indicates that the sequence of weighted fuzzy parameters gets to a fixed point. Simulation results show the modified learning algorithm is effective to support the theoretical results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号