首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   371905篇
  免费   44885篇
  国内免费   18699篇
电工技术   25032篇
技术理论   19篇
综合类   26916篇
化学工业   66160篇
金属工艺   19690篇
机械仪表   22584篇
建筑科学   29185篇
矿业工程   10273篇
能源动力   10405篇
轻工业   33486篇
水利工程   8051篇
石油天然气   16649篇
武器工业   3371篇
无线电   46784篇
一般工业技术   45554篇
冶金工业   14684篇
原子能技术   3850篇
自动化技术   52796篇
  2024年   1419篇
  2023年   5182篇
  2022年   10461篇
  2021年   14416篇
  2020年   11917篇
  2019年   10920篇
  2018年   11985篇
  2017年   13778篇
  2016年   12901篇
  2015年   17557篇
  2014年   21469篇
  2013年   26143篇
  2012年   27159篇
  2011年   28497篇
  2010年   26290篇
  2009年   24927篇
  2008年   24379篇
  2007年   22789篇
  2006年   21413篇
  2005年   17487篇
  2004年   12516篇
  2003年   10774篇
  2002年   10259篇
  2001年   9221篇
  2000年   7952篇
  1999年   6943篇
  1998年   4840篇
  1997年   4123篇
  1996年   3735篇
  1995年   3080篇
  1994年   2490篇
  1993年   1824篇
  1992年   1477篇
  1991年   1104篇
  1990年   878篇
  1989年   737篇
  1988年   549篇
  1987年   406篇
  1986年   300篇
  1985年   211篇
  1984年   138篇
  1983年   108篇
  1982年   128篇
  1981年   106篇
  1980年   102篇
  1979年   67篇
  1978年   36篇
  1977年   37篇
  1976年   50篇
  1951年   28篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
21.
Pathogens pose a serious challenge to environmental sanitation and a threat to public health.The frequent use of chemicals for sterilization in recent years has not only caused secondary damage to the environment but also increased pathogen resistance to drugs,which further threatens public health.To address this issue,the use of non-chemical antibacterial means has become a new trend for environmental disinfection.In this study,we developed red phosphorus nanoparticles(RPNPs),a safe and degradable photosensitive material with good photocatalytic and photothermal properties.The red phosphorus nanoparticles were prepared using a template method and ultrasonication.Under the irradiation of simulated sunlight for 20 min,the RPNPs exhibited an efficiency of 99.98%in killing Staphylococcus aureus due to their excellent photocatalytic and photothermal abilities.Transmission electron microscopy and ultraviolet–visible spectroscopy revealed that the RPNPs exhibited degradability within eight weeks.Both the RPNPs and their degradation products were nontoxic to fibroblast cells.Therefore,such RPNPs are expected to be used as a new type of low-cost,efficient,degradable,biocompatible,and eco-friendly photosensitive material for environmental disinfection.  相似文献   
22.
黄科  袁启平  董薇  孙沂昆  亢勇  王天翔 《电视技术》2021,45(10):129-135
恶意代码数量已经呈现爆炸式增长,对于恶意代码的检测防护显得尤为重要.近几年,基于深度学习的恶意代码检测方法开始出现,基于此,提出一种新的检测方法,将恶意代码二进制文件转化为十进制数组,并利用一维卷积神经网络(1 Dimention Convolutional Neural Networks,1D CNN)对数组进行分类和识别.针对代码家族之间数量不平衡的现象,该算法选择在分类预测上表现良好的XGBoost,并对Vision Research Lab中的25个不同恶意软件家族的9458个恶意软件样本进行了实验.实验结果表明,所提的方法分类预测精度达到了97%.  相似文献   
23.
Noncentrosymmetric (NCS) tetrel pnictides have recently generated interest as nonlinear optical (NLO) materials due to their second harmonic generation (SHG) activity and large laser damage threshold (LDT). Herein nonmetal-rich silicon phosphides RuSi4P4 and IrSi3P3 are synthesized and characterized. Their crystal structures are reinvestigated using single crystal X-ray diffraction and 29Si and 31P magic angle spinning NMR. In agreement with previous report RuSi4P4 crystallizes in NCS space group P1, while IrSi3P3 is found to crystallize in NCS space group Cm, in contrast with the previously reported space group C2. A combination of DFT calculations and diffuse reflectance measurements reveals RuSi4P4 and IrSi3P3 to be wide bandgap (Eg) semiconductors, Eg = 1.9 and 1.8 eV, respectively. RuSi4P4 and IrSi3P3 outperform the current state-of-the-art infrared SHG material, AgGaS2, both in SHG activity and laser inducer damage threshold. Due to the combination of high thermal stabilities (up to 1373 K), wide bandgaps (≈2 eV), NCS crystal structures, strong SHG responses, and large LDT values, RuSi4P4 and IrSi3P3 are promising candidates for longer wavelength NLO materials.  相似文献   
24.
董玉妹  甘为  董华 《包装工程》2021,42(8):109-114, 147
目的 针对面向老龄化社会的产品及产品服务系统设计,将赋能的设计理念和价值引入其中,探索设计结果提升老年人能动性和参与性的赋能品质,为设计师开展设计赋能实践提供参考.方法 以设计教学中的学生设计方案作为研究材料,邀请设计研究者参与工作坊,对设计结果的赋能属性进行分析,并通过聚类获得类别化的设计属性,产生了能描述赋能品质的属性词汇表.结果 总结了包含5组形容词组的设计赋能品质集,这一集合包含"顺应性"和"激励性"两个面向.结论 研究结果为设计师进行老龄化设计提供了知识参考,有助于提升设计师的赋能意识.揭示了设计赋能充满矛盾性的品质,提出面向老龄化的设计赋能需要在"顺应"和"激励"之间找到平衡.  相似文献   
25.
Synthetic active matters are perfect model systems for non-equilibrium thermodynamics and of great potential for novel biomedical and environmental applications. However, most applications are limited by the complicated and low-yield preparation, while a scalable synthesis for highly functional microswimmers is highly desired. In this paper, an all-solution synthesis method is developed where the gold-loaded titania-silica nanotree can be produced as a multi-functional self-propulsion microswimmer. By applying light, heat, and electric field, the Janus nanotree demonstrated multi-mode self-propulsion, including photochemical self-electrophoresis by UV and visible light radiation, thermophoresis by near-infrared light radiation, and induced-charge electrophoresis under AC electric field. Due to the scalable synthesis, the Janus nanotree is further demonstrated as a high-efficiency, low-cost, active adsorbent for water decontamination, where the toxic mercury ions can be reclaimed with enhanced efficiency.  相似文献   
26.
Recent advances in three‐dimensional (3D) printing have enabled the fabrication of interesting structures which are not achievable using traditional fabrication approaches. The 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks, which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through a facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions with a chitosan polymer matrix are achieved. Consequently, the mechanical properties of the 3D printed composites improve when nanogrooved carbon microtubes are used, compared to untreated microtubes. We show that by carefully controlling the coagulation bath, extrusion pressure, printing distance and printed line distance, we can 3D print composite lattices which are composed of well‐defined and separated printed lines. The conductive composite 3D structures with highly customised design presented in this work provide a suitable platform for applications ranging from soft robotics to smart tissue engineering scaffolds. © 2019 Society of Chemical Industry  相似文献   
27.
In this work, density functional theory (DFT) calculations were used to investigate the mechanism of carbon corrosion on nitrogen-doped carbon support. Free energy diagrams were generated based on three proposed reaction pathways to evaluate corrosion mechanisms. The most energetically preferred mechanism on nitrogen-doped carbon was determined. The results show that the step of water dissociation to form #OH was the rate-determining step for gra-G-1N (graphene doped with graphitic N) and pyrr-G-1N (graphene doped with pyrrolic N). As for graphene doped with pyridinic N, the step of C#OC#O formation was critical. It was found that the control of nitrogen concentration was necessary for precisely designing optimized carbon materials. Abundance of nitrogen moieties aggravated the carbon corrosion. When the high potential was applied, specific types of graphitic N and pyridinic N were found to be favorable carbon modifications to improve carbon corrosion resistance. Moreover, the solvent effect was also investigated. The results provide theoretical insights and design guidelines to improve corrosion resistance in carbon support through material modification by inhibiting the adsorption of surface oxides (OH, O, and OOH).  相似文献   
28.
The in situ axial X-ray diffraction patterns of four ceramic powder samples (MgO, Al2O3, AlN, and cBN) that were compressed in a diamond anvil cell under uniaxial non-hydrostatic conditions were recorded. The microscopic deviatoric stress as a function of the pressure was determined from the X-ray diffraction peak broadening analysis: the curves increased approximately linearly with the pressure at the initial compression stage and then levelled off under further compression. Pressure-induced transparency was observed in all of the samples under compression, and the pressure at the turning point on the curves of the microscopic deviatoric stress versus pressure corresponded to the pressure at which the samples became transparent. Analysis of the microstructural features of the pressure-induced transparent samples indicated that the compression caused the grains to fracture, and the broken grains bonded with each other. We demonstrated that the ceramics’ pressure-induced transparency was a process during which the grains were squeezed and broken, the pores were close between the grains, and the broken grains were re-bonded under compression.  相似文献   
29.
Developing the thermal stability of metal-based ceramic composites or their films has always been challenging and bottlenecks for the utilization of energy. In this paper, the novel mesh-like functional Al doped-MoO3 nanocomposite film with even distribution and high purity was firstly fabricated by the high-efficiency electrophoretic deposition and surface modification. The optimal suspension turned out to be the mixture of isopropanol and the additives of polyethyleneimine and benzoic acid. The microtopography, crystalline structure, environmental resistance and thermal stability were analyzed by field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX), X-ray diffractometer (XRD), exposure and droplet-impacting test, DSC analysis and ignition test, respectively. The water contact angle and sliding angle of product can reach ~170° and <1°, indicating the excellent anti-wetting property. In addition, the high heat-release (~3180 J/g) of product all kept almost unchangeable after six months exposure experiments, demonstrating the outstanding thermostability. The exquisite design idea here can perfectly match microelectromechanical system (MEMS), providing the valuable reference for fabricating other metal-based high-energy composites with long lifespan for real industrial applications.  相似文献   
30.
Large domain wall (DW) conductivity in an insulating ferroelectric plays an important role in the future nanosensors and nonvolatile memories. However, the wall current was usually too small to drive high-speed memory circuits and other agile nanodevices requiring high output-powers. Here, a large domain-wall current of 67.8 μA in a high on/off ratio of ~4460 was observed in an epitaxial Au/BiFeO3/SrRuO3 thin-film capacitor with the minimized oxygen vacancy concentration. The studies from read current-write voltage hysteresis loops and piezo-response force microscope images consistently showed remaining of partially unswitched domains after application of an opposite poling voltage that increased domain wall density and wall current greatly. A theoretical model was proposed to explain the large wall current. According to this model, the domain reversal occurs with the appearance of head-to-head and tail-to-tail 180° domain walls (DWs), resulting in the formation of highly conductive wall paths. As the applied voltage increased, the domain-wall number increased to enhance the on-state current, in agreement with the measurements of current-voltage curves. This work paves a way to modulate DW currents within epitaxial Au/BiFeO3/SrRuO3 thin-film capacitors through the optimization of both oxygen vacancy and domain wall densities to achieve large output powers of modern domain-wall nanodevices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号