The article presents results of the investigation of the quantitative evaluation of the degree of damage, described by the measure of accumulated plastic strain obtained in a static tensile test, using selected non-destructive techniques. Inconel 718 alloy was tested. The tests were conducted using a new type of specimens of variable cross-sectional area of measuring part. This provided a continuous distribution of plastic strain in the gage part of the specimen. The permanent deformation that varies along the sample axis enables an analysis of damage induced by a plastic deformation. The proposed method enables replacing the series of specimens by one sample. Degradation of the alloy corresponds with the changes of the electromagnetic properties of the material—the phase angle of the complex impedance of the eddy current, as well as with acoustics properties of material—acoustic birefringence of ultrasonic waves. It allows to determine the degree of damage of the material using noninvasive, non-destructive methods. Using the damage parameter proposed by Johnson it is possible to obtain the correlation between the non-destructive results and a damage degree of the material. The presented testing method delivers information about changes in the material structure caused by permanent deformation.
Multi-material molding (MMM) enables the creation of multi-material mechanisms that combine compliant hinges, serving as revolute joints, and rigid links in a single part. There are three important challenges in creating these structures: (1) bonding between the materials used, (2) the ability of the hinge to transfer the required loads in the mechanism while allowing for the prescribed degree(s) of freedom, and (3) incorporating the process-specific requirements in the design stage. This paper presents the approach for design and fabrication of miniature compliant hinges in multi-material compliant mechanisms. The methodology described in this paper allows for the concurrent design of the part and the manufacturing process. For the first challenge, mechanical interlocking strategies are presented. For the second challenge, the development of a simulation-based optimization model of the hinge is presented, involving functional and manufacturing constrains. For the third challenge, the development of hinge positioning features and gate positioning constraints is presented. The developed MMM process is described, along with the main constraints and performance measures. This includes the process sequence, the mold cavity design, gate selection, and runner system development. A case study is presented to demonstrate the feasibility of creating multi-material mechanisms with miniature hinges serving as joints through MMM process. The approach described in this paper was utilized to design a drive mechanism for a flapping wing micro air vehicle. The methods described in this paper are applicable to any lightweight, load-bearing compliant mechanism manufactured using multi-material injection molding. 相似文献
Here we report on the synthesis and characterization of anthracene derivative for solution processable organic field-effect transistors. The transistor devices with bottom-contact geometry provided a maximum field-effect mobility of 3.74 x 10(-4) cm2 V(-1) s(-1) as well as current on/off ratio of 5.05 x 10(4) and low threshold voltage. Structural information in the solid state is obtained by thermal analysis and two-dimensional wide angle X-ray scattering (2D-WAXS). From the 2D-WAXS, it is clear that the planes of anthracene rings and benzene ring of the molecule are different in solid state. We assume similar arrangement in the thin-film which limit the effective hopping and thus charge mobility. 相似文献
Methanol adsorption and electro-oxidation on Pt-Rh alloys have been studied in aqueous 0.5 M H2SO4 for a broad range of alloy surface composition including the pure Pt and Rh metals. Adsorption results have been compared with equivalent data obtained for CO and CO2 adsorption on these alloys. Current densities of continuous methanol oxidation on Pt, Rh and a Pt-Rh alloy with optimum surface molar fraction of Rh have been measured.Although on the pure Pt and Rh metals the methanol adsorption products exhibit similar energetic stability, as judged from the peak potential of electro-desorption, on the Pt-Rh alloys, there is a lowering of the stability. Similar behavior is observed for the CO and CO2 adsorption products, however, the lowering for methanol is much less than for CO and CO2. In the case of methanol, the maximum lowering is obtained for a surface molar fraction of Rh equal to ca. 0.65 and it is the same alloy surface composition that results in maximum lowering of the stability of the CO2 adsorption products, but not of the CO adsorption products (optimal fraction of Rh equal ca. 0.10). Structural similarity of the methanol and the CO2 adsorption products finds support in similar values of the electrons-per-site parameter obtained.Pt-Rh alloys show insufficient electrode potential improvement over Pt in continuous methanol electro-oxidation due to the susceptibility of Rh to strong poisoning by the methanol adsorption products, which switches off the bi-functional mechanism of methanol electro-oxidation on this alloy. The presence of Rh in the alloy with Pt additionally strongly lowers the methanol electro-oxidation turnover rate of the Pt component. 相似文献
International Journal of Mechanics and Materials in Design - The present work investigates the ablative and thermal properties of an epoxy resin which was modified with titanium dioxide... 相似文献
Arborescent polyoxyethylene of high molar mass (2×105 g/mol) and narrow molar mass distribution was synthesized in a three-stage process. In the first stage a triblock copolymer of ethylene oxide (central block, DP ca. 90) and 2,3-epoxypropanol-1 (short flanking blocks, DP ca. 5) was synthesized. The potassium alcoholate derived from this copolymer was used to initiate the polymerization of ethylene oxide and the subsequent addition of protected glycidol (1-etoxyethyl glycidyl ether). After deprotection the short polyglycidol blocks were used as branching units for the next generation. Repeated step by step process leads to the ‘pom-pom like’ branched polyoxyethylene macromolecules enriched with the reactive hydroxyl groups in the outer shell. The branched structure of the obtained polymers was evidenced by the size exclusion chromatography and NMR spectroscopy. 相似文献
The influence of silver and gold addition on the activity and physicochemical properties of supported Cu/CrAl3O6 catalysts was the aim of this work. The reduction of CrAl3O6 support shows only one reduction stage attributed to Cr (VI) species reduction originating from previously oxidized binary oxide. Supported copper catalysts reduce in one or two stages depending on copper concentration representing the reduction of copper oxide—CuO, copper oxide chemically combined with Cr(III) oxide as copper chromite—CuCr2O4 and Cr(VI) species originating from surface chromate ions CrO42?. Additionally, the introduction of silver into supported copper catalysts Cu/CrAl3O6 can led to the appearance of silver chromate phase. XRD investigations of support CrAl3O6 alone, supported copper and gold and silver promoted copper supported catalysts calcined at 400, 700 and 900 °C indicated the presence of highly amorphous alumina γ-Al2O3 like structure network in which some of cationic locations of aluminum were occupied by chromium atoms and small quantities of α-Cr2O3 phase. Additionally, for copper, silver–copper, and gold–copper supported catalysts the following oxide phases were distinguished: monometallic oxides CuO, Ag2O, binary oxides CuAl2O4, Ag2CrO4, CuCr2O4 and even ternary oxide CuAlCrO4. In the case of gold promoted copper supported catalysts metallic gold phase was detected. Activity tests carried out for these catalysts show that the most active was 20 wt.% Cu/CrAl3O6 catalyst. Promotion of copper catalysts by silver improves the activity in methanol synthesis, what can be assigned to silver chromate formation. The analogical gold chromate like formation was not confirmed. 相似文献
Antimicrobial peptides (AMPs) constitute a promising tool in the development of novel therapeutic agents useful in a wide range of bacterial and fungal infections. Among the modifications improving pharmacokinetic and pharmacodynamic characteristics of natural AMPs, an important role is played by lipidation. This study focuses on the newly designed and synthesized lipopeptides containing multiple Lys residues or their shorter homologues with palmitic acid (C16) attached to the side chain of a residue located in the center of the peptide sequence. The approach resulted in the development of lipopeptides representing a model of surfactants with two polar headgroups. The aim of this study is to explain how variations in the length of the peptide chain or the hydrocarbon side chain of an amino acid residue modified with C16, affect biological functions of lipopeptides, their self-assembling propensity, and their mode of action. 相似文献
The A peptide is a major beta-amyloid species in the human brain, forming toxic aggregates related to Alzheimer’s Disease. It also strongly chelates Cu(II) at the N-terminal Phe-Arg-His ATCUN motif, as demonstrated in A and A model peptides. The resulting complex resists ROS generation and exchange processes and may help protect synapses from copper-related oxidative damage. Structural characterization of Cu(II)A complexes by NMR would help elucidate their biological function, but is precluded by Cu(II) paramagneticism. Instead we used an isostructural diamagnetic Pd(II)-A complex as a model. To avoid a kinetic trapping of Pd(II) in an inappropriate transient structure, we designed an appropriate pH-dependent synthetic procedure for ATCUN Pd(II)A, controlled by CD, fluorescence and ESI-MS. Its assignments and structure at pH 6.5 were obtained by TOCSY, NOESY, ROESY, H-C HSQC and H-N HSQC NMR experiments, for natural abundance C and N isotopes, aided by corresponding experiments for Pd(II)-Phe-Arg-His. The square-planar Pd(II)-ATCUN coordination was confirmed, with the rest of the peptide mostly unstructured. The diffusion rates of A, Pd(II)-A and their mixture determined using PGSE-NMR experiment suggested that the Pd(II) complex forms a supramolecular assembly with the apopeptide. These results confirm that Pd(II) substitution enables NMR studies of structural aspects of Cu(II)-A complexes. 相似文献