首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157522篇
  免费   23048篇
  国内免费   6678篇
电工技术   8251篇
技术理论   9篇
综合类   10037篇
化学工业   35593篇
金属工艺   7036篇
机械仪表   7829篇
建筑科学   11860篇
矿业工程   3280篇
能源动力   4223篇
轻工业   17197篇
水利工程   2778篇
石油天然气   5939篇
武器工业   1025篇
无线电   19918篇
一般工业技术   23798篇
冶金工业   5543篇
原子能技术   1474篇
自动化技术   21458篇
  2024年   586篇
  2023年   1997篇
  2022年   3456篇
  2021年   5033篇
  2020年   4968篇
  2019年   6175篇
  2018年   6345篇
  2017年   7026篇
  2016年   6974篇
  2015年   8525篇
  2014年   9466篇
  2013年   11641篇
  2012年   10244篇
  2011年   10424篇
  2010年   10017篇
  2009年   9636篇
  2008年   9106篇
  2007年   8506篇
  2006年   8256篇
  2005年   6877篇
  2004年   5613篇
  2003年   5849篇
  2002年   6832篇
  2001年   5791篇
  2000年   4083篇
  1999年   3227篇
  1998年   1963篇
  1997年   1661篇
  1996年   1539篇
  1995年   1298篇
  1994年   995篇
  1993年   742篇
  1992年   617篇
  1991年   404篇
  1990年   321篇
  1989年   262篇
  1988年   217篇
  1987年   120篇
  1986年   112篇
  1985年   77篇
  1984年   61篇
  1983年   40篇
  1982年   34篇
  1981年   31篇
  1980年   43篇
  1979年   17篇
  1976年   7篇
  1975年   4篇
  1959年   6篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Polyetherimide (PEI) substrate for next‐generation high density optical data storage is fabricated and characterized. Cover‐layer incident or first‐surface recording configurations do not require optical properties of the substrate, which are the prerequisite conditions for the conventional material of polycarbonate (PC). Instead of the optical properties, good mechanical properties with a sufficient transcribability are required. Even though PEI has higher glass transition temperature than that of PC, a microscopic transcribability of PEI is comparable with PC by laminating a thermal insulation layer on the backside of a stamper to retard the heat flow. A macroscopic warpage of PEI substrate is smaller than that of PC substrates, which reduces tilt and servo burden. The lowest critical speed coupled with the flutter of PEI substrate is larger than that of PC substrate because of the mechanical properties of PEI. POLYM. ENG. SCI., 48:97–101, 2008. © 2007 Society of Plastics Engineers  相似文献   
32.
This work was aimed at studying the overall, partial, and local residence time distributions (RTD); overall, partial and local residence revolution distributions (RRD) and overall, partial and local residence volume distributions (RVD) in a co‐rotating twin screw extruder, on the one hand; and establishing the relationships among them, on the other hand. Emphasis was placed on the effects of the type and geometry of mixing elements (a gear block and various types of kneading elements differing in staggering angle) and process parameters on the RTD, RRD and RVD. The overall and partial RTD were directly measured in‐line during the extrusion process and the local ones were calculated by deconvolution based on a statistical theory. The local RTD allowed comparing the mixing performance of mixing elements. Also it was confirmed both experimentally and theoretically that specific throughput, defined as a ratio of throughput (Q) over screw speed (N), controlled all the above three types of residence distributions, be they local, partial or overall. The RRD and RVD do not provide more information on an extrusion process than the corresponding RTD. Rather they are different ways of representing the same phenomena. POLYM. ENG. SCI., 48:19–28, 2008. © 2007 Society of Plastics Engineers  相似文献   
33.
34.
Calculations and detailed first principle and thermodynamic analyses have been performed to understand the formation mechanism of K2Ti6O13 nanowires (NWs) by a hydrothermal reaction between bulk Na2Ti3O7 crystals and a KOH solution. It is found that direct ion exchange between K+ and Na+ plus H+ interactions with [TiO6] octahedra in Na2Ti3O7 promote the formation of an intermediate H2K2Ti6O14 phase. The large lattice mismatch between this intermediate phase and the bulk Na2Ti3O7 structure, and the large energy reduction associated with the formation of this intermediate phase, drive the splitting of the bulk crystal into H2K2Ti6O14 NWs. However, these NWs are not stable because of large [TiO6] octahedra distortion and are subject to a dehydration process, which results in uniform K2Ti6O13 NWs with narrowly distributed diameters of around 10 nm.  相似文献   
35.
By applying a combination of characterisation tools, changes in structural and superconducting properties with nominal Mg non‐stoichiometry in MgxB2 are found. The non‐stoichiometry produces enhanced in‐field critical current densities (Jc's) and upper critical field / irreversibility field (Hc2/Hirr(T)) values. Upper critical fields of ~ 21 T (4.2 K) were obtained in nominal Mg‐deficient samples compared to ~ 17 T (4.2 K) for near‐stoichiometric samples.  相似文献   
36.
A 3-D Enlarged Cell Technique (ECT) for the Conformal FDTD Method   总被引:1,自引:0,他引:1  
In this paper, we present an enlarged cell technique (ECT) to avoid the time step reduction encountered in the conformal finite-difference time-domain (CFDTD) method due to small irregular cells truncated by metallic boundaries. We focus our efforts on the discussion of the accuracy and stability of the ECT and its comparison with other conformal methods, especially the one called the uniformly stable conformal (USC) method. We also provide a simplified ECT, which is much easier to implement. In the ECT, a stability criterion is first constructed to identify instable irregular cells, i.e., those having so small an area to cause instability. Those instable cells are then enlarged into their adjacent cells to obtain a large, stable area. Careful treatment is performed on the communication between the intruding and intruded cells in terms of electromotive force by keeping the total electromotive force conservative. This technique is verified by several 3-D numerical experiments. Results show that the ECT is second-order accurate and numerically stable at the regular Courant time step limit.  相似文献   
37.
BACKGROUND: In the framework of biological processes used for waste gas treatment, the impact of the inoculum size on the start‐up performance needs to be better evaluated. Moreover, only a few studies have investigated the behaviour of elimination capacity and biomass viability in a two‐phase partitioning bioreactor (TPPB) used for waste gas treatment. Lastly, the impact of ethanol as a co‐substrate remains misunderstood. RESULTS: Firstly, no benefit of inoculation with a high cellular density (>1.5 g L?1) was observed in terms of start‐up performance. Secondly, the TPPB was monitored for 38 days to characterise its behaviour under several operational conditions. The removal efficiency remained above 63% for an inlet concentration of 7 g isopropylbenzene (IPB) m?3 and at some time points reached 92% during an intermittent loading phase (10 h day?1), corresponding to a mean elimination capacity of 4 × 10?3 g L?1 min?1 (240 g m?3 h?1) for a mean IPB inlet load of 6.19 × 10?3 g L?1 min?1 (390 g m?3 h?1). Under continuous IPB loading, the performance of the TPPB declined, but the period of biomass acclimatisation to this operational condition was shorter than 5 days. The biomass grew to approximately 10 g L?1 but the cellular viability changed greatly during the experiment, suggesting an endorespiration phenomenon in the bioreactor. It was also shown that simultaneous degradation of IPB and ethanol occurred, suggesting that ethanol improves the biodegradation process without causing oxygen depletion. CONCLUSION: A water/silicone oil TPPB with ethanol as co‐substrate allowed the removal of a high inlet load of IPB during an experiment lasting 38 days. Copyright © 2008 Society of Chemical Industry  相似文献   
38.
BACKGROUND: Simultaneous removal of sulfur, nitrogen and carbon compounds from wastewaters is a commercially important biological process. The objective was to evaluate the influence of the CH3COO?/NO3? molar ratio on the sulfide oxidation process using an inverse fluidized bed reactor (IFBR). RESULTS: Three molar ratios of CH3COO?/NO3? (0.85, 0.72 and 0.62) with a constant S2?/NO3? molar ratio of 0.13 were evaluated. At a CH3COO?/NO3? molar ratio of 0.85, the nitrate, acetate and sulfide removal efficiencies were approximately 100%. The N2 yield (g N2 g?1 NO3?‐N consumed) was 0.81. Acetate was mineralized, resulting in a yield of 0.65 g inorganic‐C g?1 CH3COO?‐C consumed. Sulfide was partially oxidized to S0, and 71% of the S2? consumed was recovered as elemental sulfur by a settler installed in the IFBR. At a CH3COO?/NO3? molar ratio of 0.72, the efficiencies of nitrate, acetate and sulfide consumption were of 100%, with N2 and inorganic‐C yields of 0.84 and 0.69, respectively. The sulfide was recovered as sulfate instead of S0, with a yield of 0.92 g SO42?‐S g?1 S2? consumed. CONCLUSIONS: The CH3COO?/NO3? molar ratio was shown to be an important parameter that can be used to control the fate of sulfide oxidation to either S0 or sulfate. In this study, the potential of denitrification for the simultaneous removal of organic matter, sulfide and nitrate from wastewaters was demonstrated, obtaining CO2, S0 and N2 as the major end products. Copyright © 2008 Society of Chemical Industry  相似文献   
39.
In this note, we revisit the problem of global practical stabilization for planar linear systems subject to actuator saturation and input additive disturbances. A parameterized linear state feedback law is designed such that, by tuning the value of the parameter, all trajectories of the closed-loop system converge to an arbitrarily small neighborhood of the origin in a finite time and remain in there.  相似文献   
40.
A new type of bottom‐emission electroluminescent device is described in which a metal oxide is used as the electron‐injecting contact. The preparation of such a device is simple. It consists of the deposition of a thin layer of a metal oxide on top of an indium tin oxide covered glass substrate, followed by the solution processing of the light‐emitting layer and subsequently the deposition of a high‐workfunction (air‐stable) metal anode. This architecture allows for a low‐cost electroluminescent device because no rigorous encapsulation is required. Electroluminescence with a high brightness reaching 5700 cd m–2 is observed at voltages as low as 8 V, demonstrating the potential of this new approach to organic light‐emitting diode (OLED) devices. Unfortunately the device efficiency is rather low because of the high current density flowing through the device. We show that the device only operates after the insertion of an additional hole‐injection layer in between the light‐emitting polymer (LEP) and the metal anode. A simple model that explains the experimental results and provides avenues for further optimization of these devices is described. It is based on the idea that the barrier for electron injection is lowered by the formation of a space–charge field over the metal‐oxide–LEP interface due to the build up of holes in the LEP layer close to this interface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号