首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3142篇
  免费   50篇
  国内免费   8篇
电工技术   97篇
化学工业   581篇
金属工艺   107篇
机械仪表   39篇
建筑科学   47篇
能源动力   68篇
轻工业   237篇
水利工程   3篇
石油天然气   4篇
无线电   339篇
一般工业技术   549篇
冶金工业   907篇
原子能技术   84篇
自动化技术   138篇
  2023年   9篇
  2022年   40篇
  2021年   42篇
  2020年   12篇
  2019年   15篇
  2018年   31篇
  2017年   33篇
  2016年   39篇
  2015年   26篇
  2014年   55篇
  2013年   92篇
  2012年   82篇
  2011年   114篇
  2010年   72篇
  2009年   98篇
  2008年   102篇
  2007年   106篇
  2006年   93篇
  2005年   90篇
  2004年   96篇
  2003年   92篇
  2002年   87篇
  2001年   58篇
  2000年   57篇
  1999年   60篇
  1998年   373篇
  1997年   212篇
  1996年   152篇
  1995年   94篇
  1994年   121篇
  1993年   93篇
  1992年   41篇
  1991年   44篇
  1990年   47篇
  1989年   42篇
  1988年   40篇
  1987年   35篇
  1986年   33篇
  1985年   41篇
  1984年   15篇
  1983年   20篇
  1982年   24篇
  1981年   13篇
  1980年   15篇
  1979年   17篇
  1978年   14篇
  1977年   14篇
  1976年   43篇
  1975年   13篇
  1972年   9篇
排序方式: 共有3200条查询结果,搜索用时 15 毫秒
81.
This paper presents the locomotion control of a microelectromechanical system (MEMS) microrobot. The MEMS microrobot demonstrates locomotion control by pulse‐type hardware neural networks (P‐HNN). P‐HNN generate oscillatory patterns of electrical activity like those of living organisms. The basic component of P‐HNN is a pulse‐type hardware neuron model (P‐HNM). The P‐HNM has the same basic features as biological neurons, such as the threshold, the refractory period, and spatiotemporal summation characteristics, and allows the generation of continuous action potentials. P‐HNN has been constructed with MOSFETs and can be integrated by CMOS technology. Like living organisms, P‐HNN has realized robot control without using software programs or A/D converters. The size of the microrobot fabricated by MEMS technology was 4 × 4 × 3.5 mm. The frame of the robot was made of a silicon wafer, equipped with rotary actuators, link mechanisms, and six legs. The MEMS microrobot emulated the locomotion method and the neural networks of an insect by rotary actuators, link mechanisms, and the P‐HNN. We show that the P‐HNN can control the forward and backward locomotion of the fabricated MEMS microrobot, and that it is possible to switch its direction by inputting an external trigger pulse. The locomotion speed was 19.5 mm/min and the step size was 1.3 mm. © 2013 Wiley Periodicals, Inc. Electr Eng Jpn, 186(3): 43–50, 2014; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.22473  相似文献   
82.
83.
We present a measurement method of the plasma current and density in an atmospheric‐pressure plasma generated using a quartz tube, helium gas, and copper foil electrode by applying a high RF voltage. The plasma in the form of a bullet is released as a plume or jet into the atmosphere. To study the characteristics of the atmospheric‐pressure plasma, the plasma current is measured using a current probe, and the drift velocity of plasma plume is measured using a photodetector. The current of the plasma plume is estimated by subtracting the ground line current from the power line current in the circuit. The density of plasma plume n is estimated from the plasma plume current I and the drift velocity v as I = envS, where S is the cross section of plasma plume. The density of the released plasma into the atmosphere is estimated as ∼1018 m−3 by the method. © 2015 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   
84.
Preceramic polymer resins are attractive for the 3D printing of net-shaped ceramic components. Recently various processes have been demonstrated for 3D printing of polymer-derived ceramics (PDCs). Ultimately in these processes, the process outcomes strongly depend on the process parameters. In particular, for PDCs the ceramic density, and ceramic yield are affected by the catalyst concentration and cross-linking duration. Here, we use thermal analysis and FTIR to quantify the interrelation of the process parameters on the process outcome for polysilazanes and demonstrate 3D printing of PDC components based on the best-identified process parameters. The results of this work can be used as guidelines for future additive manufacturing of PDCs.  相似文献   
85.
This study aimed to examine the feasibility of evaluating the stress level at the surface of lumber during drying using near-infrared (NIR) spectroscopy combined with artificial neural networks (ANNs). Sugi (Cryptomeria japonica D. Don) lumber with an initial moisture content ranging from 41.1 to 85.8% was dried using a commercial drying schedule. An ANN model for predicting surface-released strain (SRS) was developed based on NIR spectra collected from the lumber during drying. The predictive ability of the ANN model was compared with a partial least squares (PLS) regression model.

The ANN model showed good correlation between laboratory-measured SRS and predicted SRS with an R 2 of 0.79, a root mean square error of prediction (RMSEP) of 0.0009, and a ratio of performance to deviation (RPD) of 1.81. The PLS regression model gave a lower R 2 of 0.69, a higher RMSEP of 0.0010, and a lower RPD of 1.38 than the ANN model, suggesting that the predictive performance of the ANN model was superior to the PLS regression model. The SRS evolution during drying as predicted by the models showed a similar trend to the laboratory-measured one. The predicted elapsed times to reach maximum tensile SRS and stress reversal roughly coincided with the laboratory-measured times. These results suggest that NIR spectroscopy combined with multivariate analysis has the potential to predict the drying stress level on the lumber surface and the critical periods during drying, such as the points of maximum tensile stress and stress reversal.  相似文献   

86.
Product selectivity control for the synthesis of imidoylindoles and 4‐alkylidenedihydroquinazolines from N‐imidoyl‐o‐alkynylanilines via silver triflate‐catalyzed cycloisomerization or tetrabutylammonium fluoride‐promoted cyclization is described. The product selectivity depends mainly on the catalyst/promoter used, and on the substituents on the alkyne and amidine functions of the substrates.

  相似文献   

87.
Microbial synthesis of copolymers of [R]-3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB), P(3HB-co-4HB), by Alcaligenes eutrophus, Alcaligenes latus, and Comamonas acidovorans from various carbon sources has been studied. The copolyester compositions varied from 0 to 100 mol% 4HB, depending on the microorganism and the combination of carbon substrates supplied. The thermal and physical properties of compositions with 0–100 mol% 4HB were investigated. The copolyesters represented a wide variety of polymeric materials, from hard crystalline plastic to very elastic rubbers, depending on composition. The copolyester films with high 4HB fractions (64–100 mol% 4HB) exhibited the characteristics of a thermoplastic elastomer, and the tensile strength increased from 17 to 104 MPa as the 4HB fraction increased. The enzymatic degradation of P(3HB-co-4HB) films was studied in an aqueous solution of extracellular polyhydroxybutyrate (PHB) depolymerase from Alcaligenes faecalis or lipase from Rhizopus delemer. The erosion rate of P(3HB-co-4HB) films was strongly dependent on the copolymer composition. In addition, environmental degradation of P(3HB-co-4HB) films in sea water was investigated.  相似文献   
88.
The ability of Pluronic F127 (PF127) conjugated with tetrapeptide Gly-Arg-Gly-Asp (GRGD) as a sequence of Arg-Gly-Asp (RGD) peptide to form the investigated potential hydrogel (hereafter referred to as 3DG bioformer (3BE)) to produce spheroid, biocompatibility, and cell invasion ability, was assessed in this study. The fibroblast cell line (NIH 3T3), osteoblast cell line (MG-63), and human breast cancer cell line (MCF-7) were cultured in the 3BE hydrogel and commercial product (Matrigel) for comparison. The morphology of spheroid formation was evaluated via optical microscopy. The cell viability was observed through cell counting Kit-8 assay, and cell invasion was investigated via Boyden chamber assay. Analytical results indicated that 3BE exhibited lower spheroid formation than Matrigel. However, the 3BE appeared biocompatible to NIH 3T3, MG-63, and MCF-7 cells. Moreover, cell invasion ability and cell survival rate after invasion through the 3BE was displayed to be comparable to Matrigel. Thus, these findings demonstrate that the 3BE hydrogel has a great potential as an alternative to a three-dimensional cell culture for drug screening applications.  相似文献   
89.
Lectins, carbohydrate-binding proteins, are attractive biomolecules for medical and biotechnological applications. Many lectins have multiple carbohydrate recognition domains (CRDs) and strongly bind to specific glycans through multivalent binding effect. In our previous study, protein nano-building blocks (PN-blocks) were developed to construct self-assembling supramolecular nanostructures by linking two oligomeric proteins. A PN-block, WA20-foldon, constructed by fusing a dimeric four-helix bundle de novo protein WA20 to a trimeric foldon domain of T4 phage fibritin, self-assembled into several types of polyhedral nanoarchitectures in multiples of 6-mer. Another PN-block, the extender PN-block (ePN-block), constructed by tandemly joining two copies of WA20, self-assembled into cyclized and extended chain-type nanostructures. This study developed novel functional protein nano-building blocks (lectin nano-blocks) by fusing WA20 to a dimeric lectin, Agrocybe cylindracea galectin (ACG). The lectin nano-blocks self-assembled into various oligomers in multiples of 2-mer (dimer, tetramer, hexamer, octamer, etc.). The mass fractions of each oligomer were changed by the length of the linkers between WA20 and ACG. The binding avidity of the lectin nano-block oligomers to glycans was significantly increased through multivalent effects compared with that of the original ACG dimer. Lectin nano-blocks with high avidity will be useful for various applications, such as specific cell labeling.  相似文献   
90.
Mitochondrial membrane potential regulation through the mitochondrial permeability transition pore (mPTP) is reportedly involved in the ischemic postconditioning (PostC) phenomenon. Melatonin is an endogenous hormone that regulates circadian rhythms. Its neuroprotective effects via mitochondrial melatonin receptors (MTs) have recently attracted attention. However, details of the neuroprotective mechanisms associated with PostC have not been clarified. Using hippocampal CA1 pyramidal cells from C57BL mice, we studied the involvement of MTs and the mPTP in melatonin-induced PostC mechanisms similar to those of ischemic PostC. We measured changes in spontaneous excitatory postsynaptic currents (sEPSCs), intracellular calcium concentration, mitochondrial membrane potential, and N-methyl-D-aspartate receptor (NMDAR) currents after ischemic challenge, using the whole-cell patch-clamp technique. Melatonin significantly suppressed increases in sEPSCs and intracellular calcium concentrations. The NMDAR currents were significantly suppressed by melatonin and the MT agonist, ramelteon. However, this suppressive effect was abolished by the mPTP inhibitor, cyclosporine A, and the MT antagonist, luzindole. Furthermore, both melatonin and ramelteon potentiated depolarization of mitochondrial membrane potentials, and luzindole suppressed depolarization of mitochondrial membrane potentials. This study suggests that melatonin-induced PostC via MTs suppressed the NMDAR that was induced by partial depolarization of mitochondrial membrane potential by opening the mPTP, reducing excessive release of glutamate and inducing neuroprotection against ischemia-reperfusion injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号