首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16928篇
  免费   1496篇
  国内免费   863篇
电工技术   847篇
技术理论   1篇
综合类   904篇
化学工业   2645篇
金属工艺   1014篇
机械仪表   878篇
建筑科学   1075篇
矿业工程   302篇
能源动力   507篇
轻工业   1676篇
水利工程   341篇
石油天然气   570篇
武器工业   106篇
无线电   1719篇
一般工业技术   2249篇
冶金工业   1881篇
原子能技术   170篇
自动化技术   2402篇
  2024年   105篇
  2023年   318篇
  2022年   756篇
  2021年   969篇
  2020年   663篇
  2019年   496篇
  2018年   543篇
  2017年   659篇
  2016年   563篇
  2015年   730篇
  2014年   941篇
  2013年   1054篇
  2012年   1150篇
  2011年   1239篇
  2010年   1029篇
  2009年   971篇
  2008年   911篇
  2007年   818篇
  2006年   738篇
  2005年   598篇
  2004年   421篇
  2003年   352篇
  2002年   334篇
  2001年   309篇
  2000年   244篇
  1999年   247篇
  1998年   499篇
  1997年   382篇
  1996年   259篇
  1995年   167篇
  1994年   133篇
  1993年   129篇
  1992年   56篇
  1991年   39篇
  1990年   54篇
  1989年   41篇
  1988年   32篇
  1987年   33篇
  1986年   24篇
  1985年   28篇
  1984年   24篇
  1983年   19篇
  1982年   18篇
  1981年   40篇
  1980年   21篇
  1979年   14篇
  1978年   13篇
  1977年   28篇
  1976年   32篇
  1975年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
As a characteristic trait of most tumor types, metastasis is the major cause of the death of patients. In this study, a photothermal agent based on gold nanorod is coated with metal (Gd3+)‐organic (polyphenol) network to realize combination therapy for metastatic tumors. This nanotheranostic system significantly enhances antitumor therapeutic effects in vitro and in vivo with the combination of photothermal therapy (PTT) and chemotherapy, also can remarkably prevent the invasion and metastasis due to the presence of polyphenol. After the treatment, an 81% decrease in primary tumor volumes and a 58% decrease in lung metastasis are observed. In addition, the good performance in magnetic resonance imaging, computerized tomography, and photothermal imaging of the nanotheranostic system can realize image‐guided therapy. The multifunctional nanotheranostic system will find a great potential in diagnosis and treatment integration in tumor treatments, and broaden the applications of PTT treatment.  相似文献   
132.
Teng Long  Di Wu  Xin Chen  Xiaosong Guo  Li Liu 《工程优选》2016,48(6):1019-1036
Space-filling and projective properties of design of computer experiments methods are desired features for metamodelling. To enable the production of high-quality sequential samples, this article presents a novel deterministic sequential maximin Latin hypercube design (LHD) method using successive local enumeration, notated as sequential-successive local enumeration (S-SLE). First, a mesh-mapping algorithm is proposed to map the positions of existing points into the new hyper-chessboard to ensure the projective property. According to the maximin distance criterion, new sequential samples are generated through successive local enumeration iterations to improve the space-filling uniformity. Through a number of comparative studies, several appealing merits of S-SLE are demonstrated: (1) S-SLE outperforms several existing LHD methods in terms of sequential sampling quality; (2) it is flexible and robust enough to produce high-quality multiple-stage sequential samples; and (3) the proposed method can improve the overall performance of sequential metamodel-based optimization algorithms. Thus, S-SLE is a promising sequential LHD method for metamodel-based optimization.  相似文献   
133.
134.
The investigation of the mechanical response of fibre-reinforced composite laminates under impact loads can be very difficult due to the occurrence of simultaneous failure phenomena. Indeed, as a consequence of low velocity impacts, intra-laminar damages, like fibre and matrix cracking, and inter-laminar damages, such as delaminations, can take place simultaneously. These damage mechanisms can lead to significant reductions in strength and stability of the composite structure. In this paper a joint numerical-experimental study is proposed which, by means of non-destructive testing techniques (Ultra-sound and thermography) and non-linear explicit FEM analyses, aims to completely characterise the impact induced damage in composite laminates under low velocity impacts. Indeed the proposed numerical tool has been used to improve the understanding of the experimental data obtained by Non-Destructive Techniques. Applications on samples tested according to the AECMA (European Association of Aerospace Manufacturers) prEn6038 standard at three different impact energies are presented. The interaction between numerical and experimental investigation allowed to obtain an exhaustive insight on the different phases of the impact event considering the inter-laminar damage formation and evolution.  相似文献   
135.
Spina bifida aperta are complex congenital malformations resulting from failure of fusion in the spinal neural tube during embryogenesis. Despite surgical repair of the defect, most patients who survive with spina bifida aperta have a multiple system handicap due to neuron deficiency of the defective spinal cord. Tissue engineering has emerged as a novel treatment for replacement of lost tissue. This study evaluated the prenatal surgical approach of transplanting a chitosan–gelatin scaffold seeded with bone marrow mesenchymal stem cells (BMSCs) in the healing the defective spinal cord of rat fetuses with retinoic acid induced spina bifida aperta. Scaffold characterisation revealed the porous structure, organic and amorphous content. This biomaterial promoted the adhesion, spreading and in vitro viability of the BMSCs. After transplantation of the scaffold combined with BMSCs, the defective region of spinal cord in rat fetuses with spina bifida aperta at E20 decreased obviously under stereomicroscopy, and the skin defect almost closed in many fetuses. The transplanted BMSCs in chitosan–gelatin scaffold survived, grew and expressed markers of neural stem cells and neurons in the defective spinal cord. In addition, the biomaterial presented high biocompatibility and slow biodegradation in vivo. In conclusion, prenatal transplantation of the scaffold combined with BMSCs could treat spinal cord defect in fetuses with spina bifida aperta by the regeneration of neurons and repairmen of defective region.  相似文献   
136.
Silver-based products have been proven to be effective in retarding and preventing bacterial growth since ancient times. In the field of restorative dentistry, the use of silver ions/nanoparticles has been explored to counteract bacterial infections, as silver can destroy bacterial cell walls by reacting with membrane proteins. However, it is also cytotoxic towards eukaryotic cells, which are capable of internalizing nanoparticles. In this work, we investigated the biological effects of Chitlac-nAg, a colloidal system based on a modified chitosan (Chitlac), administered for 24–48?h to a co-culture of primary human gingival fibroblasts and Streptococcus mitis in the presence of saliva, developed to mimic the microenvironment of the oral cavity. We sought to determine its efficiency to combat oral hygiene-related diseases without affecting eukaryotic cells. Cytotoxicity, reactive oxygen species production, apoptosis induction, nanoparticles uptake, and lysosome and autophagosome metabolism were evaluated. In vitro results show that Chitlac-nAg does not exert cytotoxic effects on human gingival fibroblasts, which seem to survive through a homoeostasis mechanism involving autophagy. That suggests that the novel biomaterial Chitlac-nAg could be a promising tool in the field of dentistry.  相似文献   
137.
传感器总长810mm,直径为2.5mm,4根光纤布喇格光栅(fiber Bragg grating,FBG)互成90°分布在用记忆合金丝(Shap Memory Alloy,SMA)做基材的表面。通过在波分复用的基础上添加光时分复用来改进传感网络布置,提高测量精度;同时,设计了一套封装装置来确保封装时FBG与基材之间的准确定位以及黏结剂能够均匀的涂覆在基材和FBG表面,提高传感器的封装精度。实验结果表明,该FBG形状传感器的测量精度为3.1%。  相似文献   
138.
Sustainable hydrogen production via photocatalytic, electrocatalytic, and synergetic photoelectrocatalytic processes has been regarded as an effective strategy to address both energy and environmental crises. Due to their unique structures and properties, emerging ultrathin two-dimensional (2D) materials can bring about promising opportunities to realize high-efficiency hydrogen evolution. This review presents a critical appraisal of advantages and advancements for ultrathin 2D materials in catalytic hydrogen evolution, with an emphasis on structure–activity relationship. Furthermore, strategies for tailoring the microstructure, electronic structure, and local atomic arrangement, so as to further boost the hydrogen evolution activity, are discussed. Finally, we also present the existing challenges and future research directions regarding this promising field.  相似文献   
139.
This paper presents an experimental characterization of the strain dependency of the complex modulus of bituminous mixtures for strain amplitude levels lower than about \(110~\upmu\mbox{m}/\mbox{m}\). A series of strain amplitude sweep tests are performed at different temperatures (8, 10, 12 and 14°C) and frequencies (0.3, 1, 3 and 10 Hz), during which complex modulus is monitored. For each combination of temperature and frequency, four maximum strain amplitudes are targeted (50, 75, 100 and \(110~\upmu\mbox{m}/\mbox{m}\)). For each of them, two series of 50 loading cycles are applied, respectively at decreasing and increasing strain amplitudes. Before each decreasing strain sweep and after each increasing strain sweep, 5 cycles are performed at constant maximum targeted strain amplitude.Experimental results show that the behavior of the studied material is strain dependent. The norm of the complex modulus decreases and phase angle increases with strain amplitude. Results are presented in Black and Cole–Cole plots, where characteristic directions of nonlinearity can be identified. Both the effects of nonlinearity in terms of the complex modulus variation and of the direction of nonlinearity in Black space seem to validate the time–temperature superposition principle with the same shift factors as for linear viscoelasticity.The comparison between results obtained during increasing and decreasing strain sweeps suggests the existence of another phenomenon occurring during cyclic loading, which appears to systematically induce a decrease of the norm of the complex modulus and an increase of the phase angle, regardless of the type of the strain sweep (increasing or decreasing).  相似文献   
140.
Artificial muscles are reported in which reduced graphene oxide (rGO) is trapped in the helical corridors of a carbon nanotube (CNT) yarn. When electrochemically driven in aqueous electrolytes, these coiled CNT/rGO yarn muscles can contract by 8.1%, which is over six times that of the previous results for CNT yarn muscles driven in an inorganic electrolyte (1.3%). They can contract to provide a final stress of over 14 MPa, which is about 40 times that of natural muscles. The hybrid yarn muscle shows a unique catch state, in which 95% of the contraction is retained for 1000 s following charging and subsequent disconnection from the power supply. Hence, they are unlike thermal muscles and natural muscles, which need to consume energy to maintain contraction. Additionally, these muscles can be reversibly cycled while lifting heavy loads.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号