首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   459篇
  免费   25篇
  国内免费   7篇
电工技术   10篇
综合类   4篇
化学工业   86篇
金属工艺   18篇
机械仪表   26篇
建筑科学   7篇
能源动力   36篇
轻工业   38篇
水利工程   5篇
石油天然气   1篇
无线电   43篇
一般工业技术   112篇
冶金工业   8篇
原子能技术   5篇
自动化技术   92篇
  2024年   1篇
  2023年   9篇
  2022年   14篇
  2021年   9篇
  2020年   8篇
  2019年   15篇
  2018年   21篇
  2017年   13篇
  2016年   22篇
  2015年   18篇
  2014年   21篇
  2013年   43篇
  2012年   36篇
  2011年   50篇
  2010年   35篇
  2009年   32篇
  2008年   28篇
  2007年   24篇
  2006年   21篇
  2005年   7篇
  2004年   10篇
  2003年   11篇
  2002年   13篇
  2001年   1篇
  2000年   6篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   4篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1979年   1篇
排序方式: 共有491条查询结果,搜索用时 15 毫秒
21.
Lectin A (LecA) from Pseudomonas aeruginosa is an established virulence factor. Glycoclusters that target LecA and are able to compete with human glycoconjugates present on epithelial cells are promising candidates to treat P. aeruginosa infection. A family of 32 glycodendrimers of generation 0 and 1 based on a bifurcated bis‐galactoside motif have been designed to interact with LecA. The influences both of the central multivalent core and of the aglycon of these glycodendrimers on their affinity toward LecA have been evaluated by use of a microarray technique, both qualitatively for rapid screening of the binding properties and also quantitatively (Kd). This has led to high‐affinity LecA ligands with Kd values in the low nanomolar range (Kd=22 nm for the best one).  相似文献   
22.
Biocomposite of bioactive glass (BG) with chitosan polymer (CH) is prepared by freeze-drying technique. Obtained material is investigated by using several physico-chemical methods. The XRD and FTIR show the interface bonding interactions between glass and polymer. The specific surface and porosity of biocomposite were determined. In vitro assays were employed to evaluate the effect of chitosan addition on the glass by studying the chemical reactivity and bioactivity of the BG and BG/CH biocomposite after soaking in a simulated body fluid (SBF). The obtained results show the formation of a bioactive hydroxycarbonate apatite (HCA) layer and highlight the bioactivity and the kinetics of chemical reactivity of bioactive glass, particularly after association with chitosan. The BG/CH biocomposite has excellent ability to form an apatite layer. Inductively coupled plasma-optical emission spectrometry (ICP-OES) highlights the negative effect of chitosan on the silicon release toward the SBF of bioactive glass when in vitro assays.  相似文献   
23.
24.
Skeletal muscle is an essential organ, responsible for many physiological functions such as breathing, locomotion, postural maintenance, thermoregulation, and metabolism. Interestingly, skeletal muscle is a highly plastic tissue, capable of adapting to anabolic and catabolic stimuli. Skeletal muscle contains a specialized smooth endoplasmic reticulum (ER), known as the sarcoplasmic reticulum, composed of an extensive network of tubules. In addition to the role of folding and trafficking proteins within the cell, this specialized organelle is responsible for the regulated release of calcium ions (Ca2+) into the cytoplasm to trigger a muscle contraction. Under various stimuli, such as exercise, hypoxia, imbalances in calcium levels, ER homeostasis is disturbed and the amount of misfolded and/or unfolded proteins accumulates in the ER. This accumulation of misfolded/unfolded protein causes ER stress and leads to the activation of the unfolded protein response (UPR). Interestingly, the role of the UPR in skeletal muscle has only just begun to be elucidated. Accumulating evidence suggests that ER stress and UPR markers are drastically induced in various catabolic stimuli including cachexia, denervation, nutrient deprivation, aging, and disease. Evidence indicates some of these molecules appear to be aiding the skeletal muscle in regaining homeostasis whereas others demonstrate the ability to drive the atrophy. Continued investigations into the individual molecules of this complex pathway are necessary to fully understand the mechanisms.  相似文献   
25.
The glass transition temperature (Tg) is a key parameter to investigate for application in nuclear waste immobilization in borosilicate glasses. Tg for several glasses containing iodine (I) has been measured in order to determine the I effect on Tg. Two series of glass composition (ISG and NH) containing up to 2.5 mol% I and synthesized under high pressure (0.5 to 1.5 GPa) have been investigated using differential scanning calorimetry (DSC). The I local environment in glasses has been determined using X-ray photoelectron spectroscopy and revealed that I is dissolved under its iodide form (I). Results show that Tg is decreased with the I addition in the glass in agreement with previous results. We also observed that this Tg decrease is a strong function of glass composition. For NH, 2.5 mol% I induces a decrease of 24°C in Tg, whereas for ISG, 1.2 mol% decreases the Tg by 64°C. We interpret this difference as the result of the I dissolution mechanism and its effect on the polymerization of the boron network. The I dissolution in ISG is accompanied by a depolymerization of the boron network, whereas it is the opposite in NH. Although ISG corresponds to a standardized glass, for the particular case of I immobilization it appears less adequate than NH considering that the decrease in Tg for NH is small in comparison to ISG.  相似文献   
26.
Viscoelastic properties of dispersions (60–300 g kg−1) of gluten (G) and wheat starch (S) blends (0 < G/S < 0·20) and wheat flour have been studied during heating and cooling. In both cases, the moduli followed power law relationships with concentration. The temperature at which the transient network development began, caused by granule–granule interactions, decreased as the concentration increased and increased with an increase in the proportion of gluten. Moreover, gluten weakened the strength of both starch pastes and gels, as shown by the lower values of the moduli. The viscoelastic behaviour of flour samples reflected the role played by internal lipids. A structural model is proposed in order to explain the influence of gluten on the rheological behaviour of starch pastes and gels. © 1998 Society of Chemical Industry.  相似文献   
27.
This article proposes to test the feasibility of long-term surface deformation monitoring based on synthetic aperture radar (SAR) interferometry on carbon dioxide (CO2) storage sites with land cover representative of potential European injection sites (agricultural or forests with minimum built-up land cover). Because no operational injection site is currently active in Europe, a SAR data set (based on EnviSAT–ASAR spaceborne data) is simulated by combining SAR scenes acquired over a potential future European injection site with deformation measurements from SAR analysis carried out on the In-Salah (Algeria) CO2 injection demonstrator site. The study shows that under such conditions, both persistent scatterer interferometry (PSI) and diffuse scatterer (DS) interferometry appear insufficient to provide a sufficiently dense measurement network to characterize surface deformation correctly. Alternative solutions, to be investigated in further studies, include the use of data archives with shorter acquisition time spans (e.g. Sentinel-1 data when available) or installation of corner reflectors. The cost of the latter mixed space/ground solution must be evaluated with respect to conventional ground-based measurement methods in the proposed context.  相似文献   
28.
Many space systems such as satellite mirrors and their supporting structures require to be made from very low-thermal expansion materials combining both high hydrostability and relatively high mechanical properties. In this study, we have applied the “composite concept” in order to explore the possibility of fabricating near zero thermal expansion silicon nitride based ceramics. Consequently, a negative thermal expansion material belonged to the lithium aluminosilicate family (LAS powder crystallized under de β-eucryptite structure) was introduced in an alpha-silicon nitride fine powder (5 and 20 vol% of LAS) and the resulting composite system was sintered by Spark Plasma Sintering (SPS) at 1400 and 1500 °C. In the case of 20 vol% LAS compositions, relatively well-densified ceramics (94.4% of the theoretical density) were produced without adding any further sintering additive. The addition of yttria and alumina oxides allowed enhancing the densification level up to 98.2% (20 vol% LAS compositions) or from 62.3% up to 96.7% of the theoretical density in 5 vol% LAS materials. Nevertheless, it was impossible to full consolidate silicon nitride/LAS composite ceramics at temperatures lower than the temperature at which β-eucryptite melts, even by using SPS technology. Moreover, because of the relatively low temperatures involved in SPS, the α to β-Si3N4 transformation was avoided, resulting in microstructures composed of fine equiaxed α-Si3N4 grains (<200 nm) and of a glassy phase. Even if the effect of having a very large negative thermal expansion material was lost during the sintering step (because of the β-eucryptite melting), ceramics containing only 20 vol% of LAS-based phase exhibited very interesting values as regards of mechanical properties (strength, hardness, toughness, and Young's modulus), thermal conductivity and thermal expansion coefficient. We discuss in this work why we are so interested in developing dense silicon nitride/LAS ceramics sintered without any further additive addition, even though β-eucryptite is melted during the process and the transformation to the β phase is avoided.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号