首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   9篇
  国内免费   2篇
电工技术   1篇
综合类   1篇
化学工业   28篇
金属工艺   4篇
机械仪表   4篇
建筑科学   10篇
矿业工程   1篇
能源动力   19篇
轻工业   19篇
石油天然气   4篇
无线电   3篇
一般工业技术   23篇
冶金工业   8篇
自动化技术   22篇
  2022年   1篇
  2021年   5篇
  2020年   4篇
  2019年   6篇
  2018年   11篇
  2017年   3篇
  2016年   4篇
  2015年   3篇
  2014年   7篇
  2013年   18篇
  2012年   4篇
  2011年   8篇
  2010年   4篇
  2009年   11篇
  2008年   11篇
  2007年   10篇
  2006年   9篇
  2005年   3篇
  2004年   6篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有147条查询结果,搜索用时 15 毫秒
101.
This paper reviews recent advances in fully printed chipless radio frequency identification (RFID) technology with special concern on the discussion of coding theories, ID generating circuits, and tag antennas. Two types of chipless tags, one based on time-domain reflections and the other based on frequency domain signatures, are introduced. To enable a fully printed encoding circuit, linearly tapering technique is adopted in the first type of tags to cope with parasitic resistances of printed conductors. Both simulation and measurement efforts are made to verify the feasibility of the eight-bit fully printed paper-based tag. In the second type of tags, a group of LC tanks are exploited for encoding data in frequency domain with their resonances. The field measurements of the proof-of-concept of the tag produced by toner-transferring process and flexible printed circuit boards are provided to validate the practicability of the reconfigurable ten-bit chipless RFID tag. Furthermore, a novel RFID tag antenna design adopting linearly tapering technique is introduced. It shows 40 % save of conductive ink materials while keeping the same performance for conventional half-wave dipole antennas and meander line antennas. Finally, the paper discusses the future trends of chipless RFID tags in terms of fabrication cost, coding capacity, size, and reconfigurability. We see that, coupled with revolutionary design of low-cost tag antennas, fabrication/reconfiguration by printing techniques, moving to higher frequencies to shrink tag sizes and reduce manufacturing cost, as well as innovation in ID generating circuits to increase coding capacities, will be important research topics towards item-level tracking applications of chipless RFID tags.  相似文献   
102.
The monodispersed poly(2-vinyl pyridine) (p(2-VP)) and poly(2-vinyl pyridine-co-4-vinyl pyridine) (p(2-VP-co-4-VP)) particles of different compositions were synthesized by a surfactant-free emulsion polymerization system using divinyl benzene (DVB) as cross-linker. The diameter of p(2-VP) and p(2-VP-co-4-VP) particles were measured between 370 and 530 nm. Co, Ni and Cu metal nanoparticles were prepared inside these microgels after quaternization with HCl and loading of metal salts, such as CoCl2, NiCl2, and CuCl2, in ethyl alcohol followed by reduction with NaBH4. The prepared metal nanoparticles within these particles were used as catalyst for H2 production via hydrolysis of NaBH4 and NH3BH3. Various parameters of the polymeric microgels such as template, metal types, reuse, the amount of NaOH, and temperature were investigated. From hydrolysis reactions the activation energy (Ea), enthalpy (ΔH), and entropy (ΔS) were calculated for Co metal nanoparticles as catalyst for the NaBH4 hydrolysis reaction in the temperature range of 0–50 °C. The activation parameters of NaBH4 hydrolysis catalyzed by Co nanoparticle composite systems were calculated as 46.44 ± 1.1 kJ mol−1 for Ea, 36.39 ± 6.5 kJ mol−1 for ΔH and −170.56 ± 20.1 kJ mol−1 K−1 for ΔS.  相似文献   
103.
104.
Despite the fact that Titanium and its alloys are materials which have excellent corrosion-resistant properties, they have poor wear and friction performance under tribological conditions. The aim of this study is to find suitable parameters for the surface treatment of Cp-Ti substrates which are used under saline environment. In this study, TiO2 coatings were grown on Cp-Ti substrates at different frequencies which are parameters of the coating process. Due to its low cost and ability to achieve high thicknesses, The Plasma Electrolytic Oxidation (PEO) method was applied to grow TiO2 coatings. The microstructures, morphology, and crystallographic structure were analyzed using SEM and XRD. Tribocorrosion properties of the coatings were investigated using a combination of the pin-on-disk wear test and potentiodynamic polarization test units. The frequency is known to have a strong impact on the PEO process. The impacts of frequency changes on the PEO coating performance were examined under a constant voltage. As result, the increase of the frequency caused smaller pores and cracks in the surface morphology of the coating and at the same time this yielded an increment on the tribocorrosion behavior of the coating.  相似文献   
105.
The study investigated the efficiency and cost effectiveness of solar-assisted photochemical processes in comparison with advance oxidation processes (AOPs) for the textile effluents treatment. Efficiency of UV irradiation alone for one hour in removing color was almost double in comparison to solar radiation alone for effluents of different dye concentrations (E1>E2>E3). For coupled UV/H2O2 process, there was higher color removal efficiency obtained for effluent E3 (85%) as compared to E2 (70%) and E1 (57%), while E1 showed higher COD removal efficiency (70%) as compared to E2 (50%) and E3 (62%). However, the efficiency of solar/H2O2 for COD removal was comparable to UV/H2O2, i.e., E2 (57%) and E3 (53%). In the case of UV and solar-assisted photo-Fenton processes, removal efficiency of the UV process was further increased as approached to almost 90% removal for E1; on the other hand, the solar-assisted process efficiency remained the same. The relative efficiencies of AOPs were found to be in the order of UV assisted photo-Fenton process>UV/H2O2>UV alone. Although, solar-assisted Fenton treatments were relatively low and slow but without any energy consumption in comparison to high energy consumption of UV. Among the UV processes, UV assisted photo-Fenton treatment appeared to have better color removal efficiency with energy requirements of 5 kWh/m3, 8 kWh/m3 and 3 kWh/m3 for E1, E2 and E3, respectively.  相似文献   
106.
Intelligent systems cover a wide range of technologies related to hard sciences, such as modeling and control theory, and soft sciences, such as the artificial intelligence (AI). Intelligent systems, including neural networks (NNs), fuzzy logic (FL), and wavelet techniques, utilize the concepts of biological systems and human cognitive capabilities. These three systems have been recognized as a robust and attractive alternative to the some of the classical modeling and control methods. The application of classical NNs, FL, and wavelet technology to dynamic system modeling and control has been constrained by the non-dynamic nature of their popular architectures. The major drawbacks of these architectures are the curse of dimensionality, such as the requirement of too many parameters in NNs, the use of large rule bases in FL, the large number of wavelets, and the long training times, etc. These problems can be overcome with dynamic network structures, referred to as dynamic neural networks (DNNs), dynamic fuzzy networks (DFNs), and dynamic wavelet networks (DWNs), which have unconstrained connectivity and dynamic neural, fuzzy, and wavelet processing units, called neurons, feurons, and wavelons, respectively. The structure of dynamic networks are based on Hopfield networks. Here, we present a comparative study of DNNs, DFNs, and DWNs for non-linear dynamical system modeling. All three dynamic networks have a lag dynamic, an activation function, and interconnection weights. The network weights are adjusted using fast training (optimization) algorithms (quasi-Newton methods). Also, it has been shown that all dynamic networks can be effectively used in non-linear system modeling, and that DWNs result in the best capacity. But all networks have non-linearity properties in non-linear systems. In this study, all dynamic networks are considered as a non-linear optimization with dynamic equality constraints for non-linear system modeling. They encapsulate and generalize the target trajectories. The adjoint theory, whose computational complexity is significantly less than the direct method, has been used in the training of the networks. The updating of weights (identification of network parameters) is based on Broyden–Fletcher–Goldfarb–Shanno method. First, phase portrait examples are given. From this, it has been shown that they have oscillatory and chaotic properties. A dynamical system with discrete events is modeled using the above network structure. There is a localization property at discrete event instants for time and frequency in this example.  相似文献   
107.
Rapidly-exploring Random Tree star (RRT*) is a recently proposed extension of Rapidly-exploring Random Tree (RRT) algorithm that provides a collision-free, asymptotically optimal path regardless of obstacles geometry in a given environment. However, one of the limitation in the RRT* algorithm is slow convergence to optimal path solution. As a result it consumes high memory as well as time due to the large number of iterations utilised in achieving optimal path solution. To overcome these limitations, we propose the potential function based-RRT* that incorporates the artificial potential field algorithm in RRT*. The proposed algorithm allows a considerable decrease in the number of iterations and thus leads to more efficient memory utilization and an accelerated convergence rate. In order to illustrate the usefulness of the proposed algorithm in terms of space execution and convergence rate, this paper presents rigorous simulation based comparisons between the proposed techniques and RRT* under different environmental conditions. Moreover, both algorithms are also tested and compared under non-holonomic differential constraints.  相似文献   
108.
Twenty-four-hour blood pressure and heart rate measurements were carried out in 14 newly diagnosed diabetics and in 28 diabetics with 5-13 years' duration of the disease; 8 healthy children were used as controls. Mean arterial blood pressure increased at night in 5, decreased slightly (less than 10%) in 5 and decreased markedly (more than 10%) in 18 diabetics with longer duration of the disease. The diurnal-nocturnal differences in heart rates were significantly lower in diabetics with relative "nocturnal hypertension" compared to the control group (p < 0.05). A significant negative correlation was found between maximal arterial blood pressure during physical exercise and the diurnal-nocturnal differences in mean arterial blood pressure in diabetics (r = -0.58; p < 0.02). In conclusion, we found elevated nocturnal blood pressure in a subgroup of children with longer duration of diabetes and without increased albumin excretion. However, longitudinal studies of blood pressure profiles are needed to identify the candidates for diabetic vasculopathy among diabetic children.  相似文献   
109.
110.
This paper describes the development of a neural network (NN) based adaptive flight control system for a high performance aircraft. The main contribution of this work is that the proposed control system is able to compensate the system uncertainties, adapt to the changes in flight conditions, and accommodate the system failures. The underlying study can be considered in two phases. The objective of the first phase is to model the dynamic behavior of a nonlinear F-16 model using NNs. Therefore a NN-based adaptive identification model is developed for three angular rates of the aircraft. An on-line training procedure is developed to adapt the changes in the system dynamics and improve the identification accuracy. In this procedure, a first-in first-out stack is used to store a certain history of the input-output data. The training is performed over the whole data in the stack at every stage. To speed up the convergence rate and enhance the accuracy for achieving the on-line learning, the Levenberg-Marquardt optimization method with a trust region approach is adapted to train the NNs. The objective of the second phase is to develop intelligent flight controllers. A NN-based adaptive PID control scheme that is composed of an emulator NN, an estimator NN, and a discrete time PID controller is developed. The emulator NN is used to calculate the system Jacobian required to train the estimator NN. The estimator NN, which is trained on-line by propagating the output error through the emulator, is used to adjust the PID gains. The NN-based adaptive PID control system is applied to control three angular rates of the nonlinear F-16 model. The body-axis pitch, roll, and yaw rates are fed back via the PID controllers to the elevator, aileron, and rudder actuators, respectively. The resulting control system has learning, adaptation, and fault-tolerant abilities. It avoids the storage and interpolation requirements for the too many controller parameters of a typical flight control system. Performance of the control system is successfully tested by performing several six-degrees-of-freedom nonlinear simulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号