首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   827篇
  免费   8篇
电工技术   59篇
化学工业   228篇
金属工艺   19篇
机械仪表   11篇
建筑科学   13篇
能源动力   57篇
轻工业   84篇
水利工程   4篇
无线电   38篇
一般工业技术   193篇
冶金工业   45篇
原子能技术   15篇
自动化技术   69篇
  2024年   3篇
  2023年   6篇
  2022年   14篇
  2021年   21篇
  2020年   16篇
  2019年   8篇
  2018年   8篇
  2017年   10篇
  2016年   19篇
  2015年   9篇
  2014年   26篇
  2013年   29篇
  2012年   45篇
  2011年   78篇
  2010年   30篇
  2009年   49篇
  2008年   36篇
  2007年   43篇
  2006年   42篇
  2005年   32篇
  2004年   21篇
  2003年   26篇
  2002年   19篇
  2001年   13篇
  2000年   22篇
  1999年   14篇
  1998年   25篇
  1997年   25篇
  1996年   16篇
  1995年   12篇
  1994年   15篇
  1993年   16篇
  1992年   10篇
  1991年   7篇
  1990年   5篇
  1989年   12篇
  1988年   6篇
  1987年   5篇
  1986年   5篇
  1985年   6篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1979年   6篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
排序方式: 共有835条查询结果,搜索用时 15 毫秒
21.
There is a great deal of interest in proteins that can bind covalently to target molecules, as they allow unambiguous experiments by tight binding to molecules of interest. Here, we report the generation of proteins that undergo covalent labeling with small molecules through in vitro selection by using ribosome display. Selection was performed from a mutant library of the WW domain with a biotinylated peptide as its binding target, in which the biotin and the peptide are connected by a disulfide bond. After five rounds of selection, we identified mutants carrying a particular cysteine mutation. The binding target reacted specifically with the selected mutant, even in the presence of other proteins, and resulted in the generation of biotin- or peptide-labeled WW domains by thiol-disulfide exchange. When the mutant was fused to a protein of interest, the fusion protein was also labeled with biotin. Thus, the characteristics of the selected mutant should be suitable as a tag sequence that can be covalently labeled with small synthetic molecules. These results indicate that the rapid and efficient generation of such proteins is possible by ribosome display.  相似文献   
22.
Graphene-supported Pt and Pt3M (M = Co and Cr) alloy nanoparticles are prepared by ethylene glycol reduction method and characterized with X-ray diffraction and transmission electron microscopy. X-ray diffraction depicted the face-centered cubic structure of Pt in the prepared materials. Electron microscopic images show the high dispersion of metallic nanoparticles on graphene sheets. Electrocatalytic activity and stability of the materials is investigated by rotating-disk electrode voltammetry. Oxygen reduction activity of the Pt3M/graphene is found to be 3–4 times higher than that of Pt/graphene. In addition, Pt3M/graphene electrodes exhibited overpotential 45–70 mV lower than that of Pt/graphene. The high catalytic performance of Pt3M alloys is ascribed to the inhibition of formation of (hydr) oxy species on Pt surface by the alloying elements. The fuel cell performance of the catalysts is tested at 353 K and 1 atm. Maximum power densities of 790, 875, and 985 mW/cm2 are observed with graphene-supported Pt, Pt3Co, and Pt3Cr cathodes, respectively. The enhanced electrocatalytic performance of the Pt3M/graphene (M = Co and Cr) compared to that of Pt/graphene makes them a viable alternative to the extant cathodes for energy conversion device applications.  相似文献   
23.
Poly(N‐isopropylacrylamide‐co‐hydroxyethyl methacrylate) [P(NIPAM‐co‐HEMA)] copolymer was synthesized by controlled radical polymerization from respective N‐isopropylacrylamide (NIPAM) and hydroxyethyl methacrylate (HEMA) monomers with a predetermined ratio. To prepare the thermosensitive and biodegradable nanoparticles, new thermosensitive graft copolymer, poly(L ‐lactide)‐graft‐poly(N‐isoporylacrylamide‐co‐hydroxyethyl methacrylate) [PLLA‐g‐P(NIPAM‐co‐HEMA)], with the lower critical solution temperature (LCST) near the normal body temperature, was synthesized by ring opening polymerization of L ‐lactide in the presence of P(NIPAM‐co‐HEMA). The amphiphilic property of the graft copolymers was formed by the grafting of the PLLA hydrophobic chains onto the PNIPAM based hydrophilic backbone. Therefore, the graft copolymers can self‐assemble into uniformly spherical micelles ò about 150–240 nm in diameter as observed by the field emission scanning electron microscope and dynamic light scattering. Dexamethasone can be loaded into these nanostructures during dialysis with a relative high loading capacity and its in vitro release depends on temperature. Above the LCST, most of the drugs were released from the drug‐loaded micelles, whereas a large amount of drugs still remains in the micelles after 48 h below the LCST. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
24.
The recoverable shear strain (SR) for the liquid crystal‐forming hydroxypropyl cellulose solutions was determined by means of a concentric cylinder rotational apparatus as functions of shear stress prior to recovery and concentration of the solutions at 30°C. SR greatly depended on shear stress and concentration; the phase of the solution (the single phase or biphase) governed the dependences of SR on stress and concentration. SR increased with increasing stress for the single phase and decreased for the biphase. SR seemed to be related to the die swell (B): SRBn. SR exhibited a maximum and a minimum with respect to concentration. SR for the cellulosic cholesteric liquid crystalline solutions was greater than that for the isotropic solutions. A model was proposed for explaining the greater SR. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 865–872, 2002  相似文献   
25.
The samples of sliced and mashed apples were freeze-dried by controlling their surface temperatures over the usual pressure range of commercial operations. The surface of sliced samples could not be maintained at above 10°C in order to prevent the frozen layer from melting, while that of mashed samples was allowed to heat up to 70°C.

Thermal conductivities and permeabilities were determined by applying the uniformly-retreating-ice front model to the dried layer of the samples undergoing freeze-drying. The values of permeability for the mashed samples were found to depend on the ice-crystallization time during freezing. The results indicated that the drying rate of sliced samples was limited by the transfer rate of water vapor flowing through the dried layer. A cellular structural model is proposed for predicting the permeability of the dried layer, based on the resistance of the cell membrane to molecular transfer of water vapor.  相似文献   
26.
A novel technique was developed to recognize ice crystals in biological materials and to analyze their three-dimensional morphology using a Cryogenic Micro-Slicer Spectral Imaging System with a micro-slicer unit and a near-infrared spectral imaging unit. Consecutive cross-sections of a frozen sample were exposed by the multi-slicing operations with a minimum thickness of 1 µm, and their images were taken by the imaging unit. Spectroscopic analysis using a near-infrared spectrum meter showed an absorption peak at 1460 nm for pure water. Based on the observations of the absorption band of ice crystals in the wavelength range of 1450–1570 nm and its peak at 1495 nm, a commodity-type bandpass filter with a central wavelength of 1500 nm was adopted to identify ice crystals in near-infrared images. The absorption peak of water exhibited a tendency to move toward longer wavelengths with decreasing sample temperature from 25 °C to ?15 °C. The filtered images of ice crystals in frozen samples were darker than the other components at the peak wavelength of ice crystals. The three-dimensional reconstructed morphology of ice crystals revealed that they were formed along the direction of heat transfer while freezing. The proposed method provides a novel tool to investigate the effects of freezing conditions on the size, morphology and distribution of ice crystals.  相似文献   
27.
Microporous carbons have been synthesized by the carbonization of cationic surfactant-resorcinol/formaldehyde (RF) composites, which were themselves formed by electrostatic organic-organic interaction. The porous structure produced by the decomposition of the surfactant plays an important role for the gasification of the RF polymer at higher temperatures. The pore size of the carbon prepared from tetrapropylammonium bromide (TPAB)-RF, cetyltrimethylammonium bromide (C16TAB)-RF and decyltrimethylammonium bromide (C10TAB)-RF mixtures can be estimated as 0.53 nm from the Horvath-Kawazoe method using N2 adsorption isotherms. Their pore size distributions were very narrow, showing that the microporous carbons derived from surfactant-RF mixture may have promise as adsorbents and membrane materials.  相似文献   
28.
29.
The iron(III) chloride‐catalyzed Friedel–Crafts arylation of 4‐aryl‐4‐methoxy‐2,5‐cyclohexadienones, which were easily prepared by the phenyliodine(III) diacetate (PIDA)‐mediated oxidation of 4‐arylphenols in methanol, proceeded site‐selectively to form meta‐terphenyl (2,4‐diarylphenol) derivatives in good yields. The subsequent PIDA‐mediated oxidation and iron(III) chloride‐catalyzed Friedel–Crafts arylation of the resulting products gave the corresponding 2,4,6‐triarylphenol derivatives. The present method provides useful highly substituted polyarylated compounds.

  相似文献   

30.
Polyetheretherketone (PEEK) is a potential substitute for conventional metallic biomedical implants owing to its superior mechanical and chemical properties, as well as biocompatibility. However, its inherent bio-inertness and poor osseointegration limit its use in clinical applications. Herein, thin titanium films were deposited on the PEEK substrate by plasma sputtering, and porous nanonetwork structures were incorporated on the PEEK surface by alkali treatment (PEEK-TNS). Changes in the physical and chemical characteristics of the PEEK surface were analyzed to establish the interactions with cell behaviors. The osteoimmunomodulatory properties were evaluated using macrophage cells and osteoblast lineage cells. The functionalized nanostructured surface of PEEK-TNS effectively promoted initial cell adhesion and proliferation, suppressed inflammatory responses, and induced macrophages to anti-inflammatory M2 polarization. Compared with PEEK, PEEK-TNS provided a more beneficial osteoimmune environment, including increased levels of osteogenic, angiogenic, and fibrogenic gene expression, and balanced osteoclast activities. Furthermore, the crosstalk between macrophages and osteoblast cells showed that PEEK-TNS could provide favorable osteoimmunodulatory environment for bone regeneration. PEEK-TNS exhibited high osteogenic activity, as indicated by alkaline phosphatase activity, osteogenic factor production, and the osteogenesis/osteoclastogenesis-related gene expression of osteoblasts. The study establishes that the fabrication of titanate nanonetwork structures on PEEK surfaces could extract an adequate immune response and favorable osteogenesis for functional bone regeneration. Furthermore, it indicates the potential of PEEK-TNS in implant applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号