首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74390篇
  免费   16110篇
  国内免费   1161篇
电工技术   2337篇
技术理论   7篇
综合类   1879篇
化学工业   23001篇
金属工艺   1981篇
机械仪表   2581篇
建筑科学   3662篇
矿业工程   850篇
能源动力   2049篇
轻工业   9326篇
水利工程   786篇
石油天然气   1236篇
武器工业   171篇
无线电   12248篇
一般工业技术   16029篇
冶金工业   3444篇
原子能技术   411篇
自动化技术   9663篇
  2024年   114篇
  2023年   511篇
  2022年   987篇
  2021年   1508篇
  2020年   2404篇
  2019年   3896篇
  2018年   3929篇
  2017年   4330篇
  2016年   4689篇
  2015年   4955篇
  2014年   5256篇
  2013年   6943篇
  2012年   4743篇
  2011年   4781篇
  2010年   4570篇
  2009年   4444篇
  2008年   4069篇
  2007年   3742篇
  2006年   3374篇
  2005年   2756篇
  2004年   2491篇
  2003年   2543篇
  2002年   2704篇
  2001年   2289篇
  2000年   1902篇
  1999年   1207篇
  1998年   1104篇
  1997年   798篇
  1996年   656篇
  1995年   521篇
  1994年   446篇
  1993年   374篇
  1992年   278篇
  1991年   258篇
  1990年   250篇
  1989年   218篇
  1988年   192篇
  1987年   168篇
  1986年   137篇
  1985年   134篇
  1984年   118篇
  1983年   80篇
  1982年   73篇
  1981年   65篇
  1980年   87篇
  1979年   49篇
  1978年   64篇
  1977年   64篇
  1976年   80篇
  1975年   44篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
61.
Data mining extracts implicit, previously unknown, and potentially useful information from databases. Many approaches have been proposed to extract information, and one of the most important ones is finding association rules. Although a large amount of research has been devoted to this subject, none of it finds association rules from directed acyclic graph (DAG) data. Without such a mining method, the hidden knowledge, if any, cannot be discovered from the databases storing DAG data such as family genealogy profiles, product structures, XML documents, task precedence relations, and course structures. In this article, we define a new kind of association rule in DAG databases called the predecessor–successor rule, where a node x is a predecessor of another node y if we can find a path in DAG where x appears before y. The predecessor–successor rules enable us to observe how the characteristics of the predecessors influence the successors. An approach containing four stages is proposed to discover the predecessor–successor rules. © 2006 Wiley Periodicals, Inc. Int J Int Syst 21: 621–637, 2006.  相似文献   
62.
A central event in the life of a cellular system is the interaction between the exterior and the interior compartments. Biochemical signals arrive at the cellular surface, bind to their membrane bound receptor followed by a conformational change triggering the release of an internal chemical or electrical signal.This basic principle is followed by all our perceptive abilities like sense of smell or taste, but also by different signal transduction pathways involved in nerve conductivity, vision, sense of touch or hearing. To follow and mimic this principle of parallel registration is one of the aims of modern nanobiotechnology. If we are able to specifically biofunctionalize small arrays of a solid surface, which could be an electrode or a semiconductor, this approach will enable us to build up devices called “biochips” or “biosensors” that allow the determination of bioactive molecules with high specificity at lowest concentrations. Potential pharmacological active substrates might be screened as well as new receptors may be determined. Applications in genomics as well as proteomics are realistic. The major prerequisite for such a broad spectrum of applications is the fabrication of receptive surfaces. Biomolecules have to be surface‐adsorbed in a highly reproducible, oriented and well organised fashion, a task which in biology is taken by the cellular membranes as external or internal receptive surfaces. The physical principles like hydrogen bonds, electrostatic or hydrophobic interactions that lead to such an organized surface are well known. To synthesize molecular building blocks and to position them onto an otherwise unspecific surface is one of the challenges of nanobiotechnology combining biological knowledge and chemical skills with biophysical techniques that allow to handle or analyze even single molecules.  相似文献   
63.
From its foundation until 2004, ETRI has registered over 1,000 US patents. This letter analyzes the characteristics of these patents and addresses the explanatory factors affecting their citation counts. For explanatory variables, research team related variables, invention specific variables, and geographical domain related variables are suggested. Zero‐altered count data models are used to test the impact of independent variables. A key finding is that technological cumulativeness, the scale of invention, outputs in the electronic field, and the degree of dependence on the US technology domain positively affect the citation counts of ETRI‐invented US patents. The magnitude of international presence appears to negatively affect the citation counts of ETRI‐invented US patents.  相似文献   
64.
65.
A route to synthesize ZSM‐5 crystals with a bimodal micro/mesoscopic pore system has been developed in this study; the successful incorporation of the mesopores within the ZSM‐5 structure was performed using tetrapropylammonium hydroxide (TPAOH)‐impregnated mesoporous materials containing carbon nanotubes in the pores, which were encapsulated in the ZSM‐5 crystals during a solid rearrangement process within the framework. Such mesoporous ZSM‐5 zeolites can be readily obtained as powders, thin films, or monoliths.  相似文献   
66.
The probing of the micromechanical properties within a two‐dimensional polymer structure with sixfold symmetry fabricated via interference lithography reveals a nonuniform spatial distribution in the elastic modulus “imprinted” with an interference pattern in work reported by Tsukruk, Thomas, and co‐workers on p. 1324. The image prepared by M. Lemieux and T. Gorishnyy shows how the interference pattern is formed by three laser beams and is transferred to the solid polymer structure. The elastic and plastic properties within a two‐dimensional polymer (SU8) structure with sixfold symmetry fabricated via interference lithography are presented. There is a nonuniform spatial distribution in the elastic modulus, with a higher elastic modulus obtained for nodes (brightest regions in the laser interference pattern) and a lower elastic modulus for beams (darkest regions in the laser interference pattern) of the photopatterned films. We suggest that such a nonuniformity and unusual plastic behavior are related to the variable material properties “imprinted” by the interference pattern.  相似文献   
67.
常华  周理  苏伟 《天然气工业》2006,26(8):138-140
理想的脱硫工艺应满足体积小、费用低、净化度高、无二次污染等要求。在碱性溶液吸收微量硫化氢时同步进行电解,可有效减小设备体积,并将硫化氢转变为氢气和硫磺,不产生恶性气味。为此,实验研究了温度、浓度、电流密度、pH值等因素对电解阳极过程的影响,确定了适宜的电解条件,并在该条件下进行了吸收实验。结果表明,在最佳电解条件下,硫化钠溶液能充分吸收天然气中经变压吸附提浓的硫化氢(800 mg/m3),吸收率大于99.9%。  相似文献   
68.
Polyaryloxydiphenylsilanes were prepared from phosphorus‐containing diols and diphenydichlorolsilane through solution polymerization. With a stoichiometric imbalance in feed monomers, the resulting polymers exhibited moderate melting points and good processing properties. The polymers prepared showed initial decomposition temperatures above 340 °C, excellent thermal stability, high char yields at 850 °C and very high limited oxygen index values of 56–59. The polymers' char yields and their (P + Si) contents showed linear relationships. © 2003 Society of Chemical Industry  相似文献   
69.
Three different configurations of Au‐nanoparticle/CdS‐nanoparticle arrays are organized on Au/quartz electrodes for enhanced photocurrent generation. In one configuration, Au‐nanoparticles are covalently linked to the electrode and the CdS‐nanoparticles are covalently linked to the bare Au‐nanoparticle assembly. The resulting photocurrent, φ = 7.5 %, is ca. 9‐fold higher than the photocurrent originating from a CdS‐nanoparticle layer that lacks the Au‐nanoparticles, φ = 0.8 %. The enhanced photocurrent in the Au/CdS nanoparticle array is attributed to effective charge separation of the electron–hole pair by the injection of conduction‐band electrons from the CdS‐ to the Au‐nanoparticles. Two other configurations involving electrostatically stabilized bipyridinium‐crosslinked Au/CdS or CdS/Au nanoparticle arrays were assembled on the Au/quartz crystal. The photocurrent quantum yields in the two systems are φ = 10 % and φ = 5 %, respectively. The photocurrents in control systems that include electrostatically bridged Au/CdS or CdS/Au nanoparticles by oligocationic units that lack electron‐acceptor units are substantially lower than the values observed in the analogous bipyridinium‐bridged systems. The enhanced photocurrents in the bipyridinium‐crosslinked systems is attributed to the stepwise electron transfer of conduction‐band electrons to the Au‐nanoparticles by the bipyridinium relay bridge, a process that stabilizes the electron–hole pair against recombination and leads to effective charge separation.  相似文献   
70.
The synthesis of powders with controlled shape and narrow particle size distributions is still a major challenge for many industries. A continuous Segmented Flow Tubular Reactor (SFTR) has been developed to overcome homogeneity and scale‐up problems encountered when using batch reactors. Supersaturation is created by mixing the co‐reactants in a micromixer inducing precipitation; the suspension is then segmented into identical micro‐volumes by a non‐miscible fluid and sent through a tube. These micro‐volumes are more homogeneous when compared to large batch reactors leading to narrower size distributions, better particle morphology, polymorph selectivity and stoichiometry. All these features have been demonstrated on single tube SFTR for different chemical systems. To increase productivity for commercial application the SFTR is being “scaled‐out” by multiplying the number of tubes running in parallel instead of scaling‐up by increasing their size. The versatility of the multi‐tube unit will allow changes in type of precipitate with a minimum of new investment as new chemistry can be researched, developed and optimised in a single tube SFTR and then transferred to the multi‐tube unit for powder production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号