首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   607篇
  免费   81篇
电工技术   3篇
化学工业   198篇
金属工艺   10篇
机械仪表   57篇
建筑科学   3篇
能源动力   25篇
轻工业   73篇
武器工业   2篇
无线电   106篇
一般工业技术   124篇
冶金工业   23篇
原子能技术   6篇
自动化技术   58篇
  2024年   1篇
  2023年   10篇
  2022年   12篇
  2021年   33篇
  2020年   27篇
  2019年   40篇
  2018年   36篇
  2017年   32篇
  2016年   32篇
  2015年   27篇
  2014年   39篇
  2013年   41篇
  2012年   31篇
  2011年   47篇
  2010年   31篇
  2009年   37篇
  2008年   23篇
  2007年   28篇
  2006年   19篇
  2005年   15篇
  2004年   15篇
  2003年   18篇
  2002年   9篇
  2001年   16篇
  2000年   8篇
  1999年   5篇
  1998年   10篇
  1997年   5篇
  1996年   8篇
  1995年   6篇
  1994年   2篇
  1993年   4篇
  1992年   7篇
  1991年   3篇
  1990年   2篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1981年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有688条查询结果,搜索用时 328 毫秒
191.
Surface‐enhanced Raman scattering (SERS) is one of the most promising methods to detect small molecules for point‐of‐care analysis as it is rapid, nondestructive, label‐free, and applicable for aqueous samples. Here, microgels containing highly concentrated yet evenly dispersed gold nanoparticles are designed to provide SERS substrates that simultaneously achieve contamination‐free metal surfaces and high signal enhancement and reproducibility. With capillary microfluidic devices, water‐in‐oil‐in‐water (W/O/W) double‐emulsion drops are prepared to contain gold nanoparticles and hydrogel precursors in innermost drop. Under hypertonic condition, water is selectively pumped out from the innermost drops. Therefore, gold nanoparticles are gently concentrated without forming aggregates, which are then captured by hydrogel matrix. The resulting microgels have a concentration of gold nanoparticles ≈30 times higher and show Raman intensity two orders of magnitude higher than those with no enrichment. In addition, even distribution of gold nanoparticles results in uniform Raman intensity, providing high signal reproducibility. Moreover, as the matrix of the microgel serves as a molecular filter, large adhesive proteins are rejected, which enables the direct detection of small molecules dissolved in the protein solution. It is believed that this advanced SERS platform is useful for in situ detection of toxic molecules in complex mixtures such as biological fluids, foods, and cosmetics.  相似文献   
192.
In this article, two adaptive multivariate charts, which combine the double sampling (DS) and variable sampling interval (VSI) features, called the adaptive multivariate double sampling variable sampling interval T2 (AMDSVSI T2) and the adaptive multivariate double sampling variable sampling interval combined T2 (AMDSVSIC T2) charts, are proposed. The real purpose of using the proposed charts is to provide flexibility by enabling the sampling interval length of the DS T2 chart to be varied so that the chart's sensitivity can be enhanced. The fundamental difference between the two proposed charts is that when a second sample is taken, the AMDSVSI T2 chart uses the information of the combined sample mean vectors while the AMDSVSIC T2 chart uses the information of the combined T2 statistics, in deciding about the process status. This research is motivated by existing combined DS and VSI charts in the literature, which show convincing performance improvement over the standard DS chart. Consequently, it is believed that adopting this existing approach in the multivariate case will enable superior multivariate DS charts to be proposed. Numerical results show that the proposed charts outperform the existing standard T2 and other adaptive multivariate charts, in detecting shifts in the mean vector, for the zero‐state and steady‐state cases. The performances of both charts when the shift sizes in the mean vector are unknown are also measured. The application of the AMDSVSI T2 chart is illustrated with an example.  相似文献   
193.
Transition metal dichalcogenides, especially MoS2, are considered as promising electrocatalysts for hydrogen evolution reaction (HER). Since the physicochemical properties of MoS2 and electrode morphology are highly sensitive factor for HER performance, designed synthesis is highly pursued. Here, an in situ method to prepare a 3D carbon/MoS2 hybrid catalyst, motivated by the graphene ribbon synthesis process, is reported. By rational design strategies, the hybrid electrocatalysts with cross‐connected porous structure are obtained, and they show a high HER activity even comparable to the state‐of‐the‐art MoS2 catalyst without appreciable activity loss in long‐term operations. Based on various physicochemical techniques, it is demonstrated that the synthetic procedure can effectively guide the formation of active site and 3D structure with a distinctive feature; increased exposure of active sites by decreased domain size and intrinsically high activity through controlling the number of stacking layers. Moreover, the importance of structural properties of the MoS2‐based catalysts is verified by controlled experiments, validating the effectiveness of the designed synthesis approach.  相似文献   
194.
This study proposes feed-forward echo state networks (ESN) as an estimator, and couples it with second-order proportional-integral-derivative (PID) feedback extension to compensate for dead time in feedback systems. The system is tested for two-dimensional space motion patterns recognition and prediction using simulations, which allows control of noise input. Tikhonov regularization is employed for training readouts and second-order PID feedback minimizes prediction bias. Evaluation is done using mean squared error and the coupled system performs well compared to any of its standalone versions. The results suggest it is feasible to (1) ‘compress’ the memory capacity of the system, and (2) reduce the number optimization parameters, while maintaining the estimation performance and following the excitation property of the estimator. It is feasible to optimize the ESN using feedback gain although it plays a significant role in the proposed system because the improvement by bias correction is far greater than that of optimization; thus, simplifying the estimation to a feedback problem which is easily tuned using the Ziegler–Nichols method.  相似文献   
195.
UV micro-photodetectors (mPDs) have received significant attention owing to the increasing demand for application in wearable healthcare devices. However, mPDs often suffer from tiny signals owing to their small size. Although this problem can be overcome by using low-dimensional nanomaterials with high surface-to-volume ratios, such as nanowires (NWs), selective synthesis of functional NWs on the desired position of the specific substrate is challenging. This study introduces, for the first time, the laser-induced hydrothermal growth (LIHG) process, in which a strongly focused laser beam generates a localized high-temperature field, enabling the localized growth of CuO NWs on the desired position of the specific substrate. Also, an all-laser direct patterning process for the fabrication of a flexible mPD based on a p-CuO NW/n-ZnO NW heterojunction is demonstrated. The PN NWs heterojunction exhibits remarkable photocurrent enhancement compared to a homojunction with a single semiconductor material. Furthermore, the all-laser direct patterning process of the flexible PN NWs heterojunction can be applied for the fabrication of other flexible optoelectronic applications.  相似文献   
196.
Near-infrared organic photodetectors (NIR OPDs) comprising ultra-narrow bandgap non-fullerene acceptors (NFA, over 1000 nm) typically exhibit high dark current density under applied reverse bias. Therefore, suppression of dark current density is crucial to achieve high-performance of such NIR OPDs. Herein, cyano (CN) with a strong electron-withdrawing property is introduced into alkoxy thiophene as a π-bridge to adjust its optoelectronic characteristics, and the correlation between dark current density and charge injection barrier is investigated. Compared with their motivated NFA (COTH), the novel CN-substituted NFAs, COTCN and COTCN2, exhibited deeper-lying highest occupied molecular orbital energy levels and narrower optical bandgap (<1.10 eV), owing to the strong inductive and resonance effect of CN. The dark current and total noise currents are minimized as the number of substituted CN increases because of the larger hole injection barrier. Consequently, PTB7-Th:COTCN2 exhibited the best shot-noise limited detectivity (D*sh, 1.18 × 1012 Jones) and total noise detectivity (D*n, 1.33 × 1011 Jones) compared with those of PTB7-Th:COTH (D*sh, 2.47 × 1011 Jones and D*n, 1.96 × 1010 Jones).  相似文献   
197.
1D perovskite materials are of significant interest to build a new class of nanostructures for electronic and optoelectronic applications. However, the study of colloidal perovskite nanowires (PNWs) lags far behind those of other established perovskite materials such as perovskite quantum dots and perovskite thin films. Herein, a dual-phase passivation strategy to synthesize all-inorganic PNWs with minimized surface defects is reported. The local phase transition from CsPbBr3 to CsPb2Br5 in PNWs increases the photoluminescence quantum yield, carrier lifetime, and water-resistivity, owing to the energetic and chemical passivation effect. In addition, these dual-phase PNWs are employed as an interfacial layer in perovskite solar cells (PSCs). The enhanced surface passivation results in an efficient carrier transfer in PSCs, which is a critical enabler to increase the power conversion efficiency (PCE) to 22.87%, while the device without PNWs exhibits a PCE of 20.74%. The proposed strategy provides a surface passivation platform in 1D perovskites, which can lead to the development of novel nanostructures for future optoelectronic devices.  相似文献   
198.
199.
Load balance is an important issue for the performance of software distributed shared memory (DSM) systems. One solution of addressing this issue is exploiting dynamic thread migration. In order to reduce the data consistency communication increased by thread migration, an effective load balance scheme must carefully choose threads and destination nodes for workload migration. In this paper, a group-based load balance scheme is proposed to resolve this problem. The main characteristic of this scheme is to classify the overloaded nodes and the lightly loaded nodes into a sender group and a receiver group, and then consider all the threads of the sender group and all the nodes of the receiver group for each decision. The experimental results show that the group-based scheme reduces more communication than the previous schemes. Besides, this paper also resolves the problem of the high costs caused by group-based schemes. Therefore, the performance of the test programs is effectively enhanced after minimizing the communication increased by thread migration.  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号