首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   1篇
电工技术   1篇
化学工业   10篇
建筑科学   2篇
能源动力   2篇
轻工业   5篇
无线电   6篇
一般工业技术   31篇
冶金工业   1篇
自动化技术   46篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   5篇
  2018年   4篇
  2017年   4篇
  2016年   5篇
  2015年   2篇
  2014年   1篇
  2013年   7篇
  2012年   6篇
  2011年   8篇
  2010年   3篇
  2009年   4篇
  2008年   6篇
  2007年   6篇
  2006年   7篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1981年   1篇
  1979年   3篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
31.
32.
    
Doping methodologies using monolayers offer controlled, ex situ doping of nanowires (NWs), and 3D device architectures using molecular monolayers as dopant sources with uniform, self‐limiting characteristics. Comparing doping levels and uniformity for boron‐containing monolayers using different methodologies demonstrates the effects of oxide capping on doping performances following rapid thermal anneal (RTA). Strikingly, for noncovalent monolayers of phenylboronic acid (PBA), highest doping levels are obtained with minimal thermal budget without applying oxide capping. Monolayer damage and entrapment of molecular fragments in the oxide capping layer account for the lower performance caused by thermal damage to the PBA monolayer, which results in transformation of the monolayer source to a thin solid source layer. The impact of the oxide capping procedure is demonstrated by a series of experiments. Details of monolayer fragmentation processes and its impact on doping uniformity at the nanoscale are addressed for two types of surface chemistries by applying Kelvin probe force microscopy (KPFM). These results point at the importance of molecular decomposition processes for monolayer‐based doping methodologies, both during preanneal capping step and during rapid thermal processing step. These are important guidelines to be considered for future developments of appropriate surface chemistry used in monolayer doping applications.  相似文献   
33.
    
Potassium homeostasis is fundamental for brain function. Therefore, effective removal of excessive K+ from the synaptic cleft during neuronal activity is paramount. Astrocytes play a key role in K+ clearance from the extracellular milieu using various mechanisms, including uptake via Kir channels and the Na+-K+ ATPase, and spatial buffering through the astrocytic gap-junction coupled network. Recently we showed that alterations in the concentrations of extracellular potassium ([K+]o) or impairments of the astrocytic clearance mechanism affect the resonance and oscillatory behavior of both the individual and networks of neurons. These results indicate that astrocytes have the potential to modulate neuronal network activity, however, the cellular effectors that may affect the astrocytic K+ clearance process are still unknown. In this study, we have investigated the impact of neuromodulators, which are known to mediate changes in network oscillatory behavior, on the astrocytic clearance process. Our results suggest that while some neuromodulators (5-HT; NA) might affect astrocytic spatial buffering via gap-junctions, others (DA; Histamine) primarily affect the uptake mechanism via Kir channels. These results suggest that neuromodulators can affect network oscillatory activity through parallel activation of both neurons and astrocytes, establishing a synergistic mechanism to maximize the synchronous network activity.  相似文献   
34.
35.
    
Introduction The optimal use of erythropoiesis stimulating agents (ESAs) to treat anemia in end stage renal disease remains controversial due to reported associations with adverse events. In analyzing these associations, studies often utilize ESA resistance indices (ERIs), to characterize a patient's response to ESA. In this study, we examine whether ERI is an adequate measure of ESA resistance. Methods We used retrospective data from a nonconcurrent cohort study of incident hemodialysis patients in the United States (n = 9386). ERI is defined as average weekly erythropoietin (EPO) dose per kg body weight (wt) per average hemoglobin (Hgb), over a 3‐month period (ERI = (EPO/wt)/Hgb). Linear regression was used to demonstrate the relationship between ERI and weight‐adjusted EPO. The coefficient of variation was used to compare the variability of Hgb with that of weight‐adjusted EPO to explain this relationship. This analysis was done for each quarter during the first year of dialysis. Findings ERI is strongly linearly related with weight‐adjusted EPO dose in each of the four quarters by the equation ERI = 0.0899*(EPO/wt) (range of R2 = 0.97–0.98) and weakly linearly related to 1/Hgb (range of R2 = 0.06–0.16). These correlations hold independent of age, sex, hgb level, ERI level, and epo‐naïve stratifications. Discussion ERI is strongly linearly related to weight‐adjusted (and nonweight‐adjusted) EPO dose by a “universal,” not patient‐specific formula, and thus is a surrogate of EPO dose. Therefore, associations between ERI and clinical outcomes are associations between a confounded EPO dose and those outcomes.  相似文献   
36.
Coral reefs can experience extreme salinity changes, particularly hypo-salinity, as a result of storms, heavy rainy seasons (e.g., monsoons), and coastal runoff. Field and laboratory observations have documented that corals exposed to hypo-saline conditions can undergo extensive bleaching and mortality. There is controversy in the literature as to whether hypo-saline conditions induce a pathological response in corals, and if there is a relationship between decreasing salinity treatment and pathological responses. To test the hypothesis that hypo-salinity exposure does not have a pathological effect on coral, we used histological and cellular diagnostic methods to characterize the pathology in hypo-salinity-exposed corals. Colonies of Stylophora pistillata were exposed to five salinity concentrations [39 parts per thousand (ppt), 32 ppt, 28 ppt, 24 ppt, and 20 ppt] that may realistically occur on a reef. Histological examination indicated an increasing severity of pathomorphologies associated with decreasing salinity, including increased tissue swelling, degradation and loss of zooxanthellae, and tissue necrosis. Pulse-amplitude modulated chlorophyll fluorimetry kinetics demonstrated a decreasing photosynthetic efficiency with decreasing salinity conditions. Cytochrome P450 levels were affected by even slight changes in salinity concentration suggesting that detoxification pathways, as well as several endocrine pathways, may be adversely affected. Finally, these studies demonstrated that hypo-saline conditions can induce an oxidative-stress response in both the host and in its algal symbiont, and in so doing, may synergistically increase oxidative-stress burdens. As with other types of environmental stresses, exposure to hypo-saline conditions may have long-term consequences on coral physiology.  相似文献   
37.
Treated domestic secondary effluent is a valuable water source that can be reused for diverse purposes. However, in order to minimize health and environmental risks and to maintain adequate levels of sustainable agriculture production on a long range time scale, advanced treatment is required. Advanced effluent quality maintaining minimal risks can be primarily attained by implementing the membrane technology. Field experiments are in progress for secondary wastewater polishing for unrestricted reuse for sustainable agricultural production. The two stage membrane treatment system for the secondary effluent polishing consists of combining two main stages: ultrafiltration (UF) and reverse osmosis (RO) membrane treatment. The UF stage is efficient in the removal of the organic matter and the pathogens while the RO provides the dissolved solids (salinity) removal. Effluent of various qualities is applied for irrigation along with continuous monitoring of the membrane components performance. The experimental data was obtained in the ongoing pilot studies carried out near the City of Arad (Israel) wastewater treatment system (the pilot plant performs in a feed and bleed operation mode). The results indicate the importance of maintaining high quality effluent for sustainable agriculture production. The management modeling gives an idea of the importance in maintaining adequate UF flushing policy in order to minimize expenses due to fouling.  相似文献   
38.
This problem is based on the British Telecom workforce scheduling problem, in which technicians (with different skills) are assigned to tasks (which require different skills) which arrive (partially) dynamically during the day. In order to manage their workforce, British Telecom divides the different regions into several areas. At the beginning of each day all the technicians in a region are assigned to one of these areas. During the day, each technician is limited to tasks within the assigned area.  相似文献   
39.
40.
    
Algorithmic cooling (AC) is a recent spin-cooling approach that employs entropy compression methods in open systems. AC reduces the entropy of spins on suitable molecules beyond Shannon's bound on the degree of entropy compression by reversible manipulations. Remarkably, AC makes use of thermalization, a generally destructive facet of spin systems, as an integral part of the cooling scheme. AC is capable of cooling spins to very low temperatures and provides significant cooling for molecules containing as few as 5–7 spins. Application of AC to slightly larger molecules could lead to breakthroughs in high-sensitivity NMR spectroscopy in the near future. Furthermore, AC may be germane to the development of scalable NMR quantum computers. We introduce here a new practicable algorithm, “PAC3”, and several new exhaustive cooling algorithms, such as the Tribonacci and k-bonacci algorithms. In particular, we present the “all-bonacci” algorithm, which appears to reach the maximal degree of cooling obtainable by the optimal AC approach. AC is potentially beneficial for NMR-derived biomedical applications, which involve bio-molecules with isotope enrichments, such as 13 C- and 15 N-labeled amino acids. We briefly survey AC experiments, including a recent 3-spin experiment in which Shannon's bound was bypassed. The difficulties associated with cooling molecules bearing a greater number of spins are explained. Finally, the potential of selected cooling algorithms (practicable, exhaustive, and optimal algorithms) is illustrated with regard to a highly relevant bio-medical target— 13 C-labeled glucose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号