首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23446篇
  免费   1307篇
  国内免费   985篇
电工技术   846篇
综合类   731篇
化学工业   3301篇
金属工艺   1891篇
机械仪表   1145篇
建筑科学   1245篇
矿业工程   270篇
能源动力   806篇
轻工业   1289篇
水利工程   269篇
石油天然气   664篇
武器工业   82篇
无线电   3149篇
一般工业技术   5051篇
冶金工业   2171篇
原子能技术   292篇
自动化技术   2536篇
  2024年   61篇
  2023年   227篇
  2022年   400篇
  2021年   564篇
  2020年   405篇
  2019年   419篇
  2018年   549篇
  2017年   623篇
  2016年   610篇
  2015年   576篇
  2014年   821篇
  2013年   1507篇
  2012年   1141篇
  2011年   1451篇
  2010年   1198篇
  2009年   1367篇
  2008年   1213篇
  2007年   1260篇
  2006年   1196篇
  2005年   881篇
  2004年   894篇
  2003年   893篇
  2002年   955篇
  2001年   887篇
  2000年   695篇
  1999年   631篇
  1998年   885篇
  1997年   635篇
  1996年   572篇
  1995年   400篇
  1994年   317篇
  1993年   244篇
  1992年   186篇
  1991年   191篇
  1990年   146篇
  1989年   121篇
  1988年   92篇
  1987年   63篇
  1986年   70篇
  1985年   50篇
  1984年   52篇
  1983年   42篇
  1982年   31篇
  1981年   22篇
  1980年   24篇
  1979年   21篇
  1978年   20篇
  1977年   17篇
  1974年   13篇
  1970年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Testing for small‐delay defects (SDDs) has become an important component of integrated circuit testing. In this paper, an efficient small‐delay fault simulator, a hybrid method combining forward serial simulation and backward critical path tracing simulation for SDDs is proposed, which aims to determine the coverage of small‐delay defects for a given test set fast and accurately. In our proposed method, a unit delay model is employed, and reconvergent sensitization as well as hazard‐based detection is considered. Signal waveforms are expressed by bitmap data forms. In addition to providing an accurate result for fault simulation, the proposed simulator can well assist test generation. Experimental results demonstrate that the proposed simulator can further accelerate the simulation by one or two orders of magnitude compared with previous works. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
952.
A comprehensive optimization model that can determine the most cost‐effective and environmentally sustainable production pathways in an integrated processing network is needed, especially in the bioconversion space. We develop the most comprehensive bioconversion network to date with 193 technologies and 129 materials/compounds for fuels production. We consider the tradeoff between scaling capital and operating expenditures (CAPEX and OPEX) as well as life cycle environmental impacts. Additionally, we develop a general network‐based modeling framework with nonconvex terms for CAPEX. To globally optimize the nonlinear program with high computational efficiency, we develop a specialized branch‐and‐refine algorithm based on successive piecewise linear approximations. Two case studies are considered. The optimal pathways have profits from ?$12.9 to $99.2M/yr, and emit 791 ton CO2‐eq/yr to 31,571 ton CO2‐eq/yr. Utilized technologies vary from corn‐based fermentation to pyrolysis. The proposed algorithm reduces computational time by up to three orders of magnitude compared to general‐purpose global optimizers. © 2014 American Institute of Chemical Engineers AIChE J, 61: 530–554, 2015  相似文献   
953.
Three types of zinc salts, ZnAl2O4, ZnFe2O4, and Zn2SiO4, were prepared by coprecipitation. Potential smoke and toxicity suppression by zinc salts in flame‐retardant polyurethane‐polyisocyanurate foams (FPUR‐PIR) with dimethylmethylphosphonate (DMMP) and tris (2‐chloropropyl) phosphate (TCPP) were investigated. The crystal structure and dispersity of zinc salts in FPUR‐PIR were characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). Smoke density, flame retardancy, and thermal degradation were studied using smoke density rating (SDR), limiting oxygen index (LOI), the cone calorimeter test, and thermogravimetry coupled with FTIR spectrophotometry (TGA‐FTIR). The results indicated that pure zinc salts were obtained and evenly dispersed on the cell wall of FPUR‐PIR. SDR and the specific extinction area (SEA) were significantly decreased, the time to second heat release rate peak (pk‐HRR) of FRUP‐PIR was delayed after incorporation of the zinc salts; zinc salts partially inhibited phosphorus oxide release into the gas phase, enhanced the condensed phase effect of phosphorus, reduced, and prolonged the release of isocyanate compound and hydrogen cyanide from FRUP‐PIR; due to an increase in the amount of char residues, which indicated the suppression of smoke and toxicity volatiles. ZnFe2O4 resulted in better char formation at the initial degradation stage of FPUR‐PIR, and ZnAl2O4 retained more phosphorus in the solid phase at higher temperature. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41846.  相似文献   
954.
Acetamide‐modified hyper‐cross‐linked resin, HCP‐HMTA‐AA, was prepared and its adsorption performance was evaluated using phenol as the adsorbate. The prepared HCP–HMTA–AA owned predominant micro/mesopores and medium polarity, making it possess a superior adsorption to phenol as compared with polystyrene (PS), chloromethylated polystyrene (CMPS), hyper‐cross‐linked polymer (HCP) and amino‐modified hyper‐cross‐linked resin (HCP–HMTA). The adsorption enthalpy was ?99.56 kJ/mol at zero fractional loading, multiple hydrogen bonding contributed to such a great adsorption enthalpy and an approximately planar hexahydric ring was formed between acetamide of HCP–HMTA–AA and phenol. The dynamic capacity of phenol on HCP–HMTA–AA was 291.3 mg/g at a feed concentration of 946.2 mg/L and a flow rate of 48 mL/h and the resin column was almost regenerated by a mixed solvent including 50% of ethanol (v/v) and 0.01 mol/L of sodium hydroxide (w/v). HCP–HMTA–AA was repeatedly used for five times and the equilibrium adsorption capacity for the five time reached 94.2% of the equilibrium adsorption capacity for the first time. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41597.  相似文献   
955.
Different with the conventional method of manufacturing poly(vinyl formal) (PVF) porous foam by using the pore‐forming agents such as wheat or potato starches, a novel method without using the pore‐forming agent is introduced in this article. Through the help of images taken by a scanning electron microscope, the formation process of the present PVF foam will be discussed in terms of the spinodal decomposition (SD) phase separation principle. Additionally, the effect of poly(vinyl alcohol) concentration and reaction temperature on the pore structure of the PVF foam will be investigated. Moreover, the water adsorption capacities of the PVF foams obtained by the present method will be studied in details through the analyses of pore‐size distribution, mechanical modulus, and thermal property. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41270.  相似文献   
956.
Sodium ion batteries (SIBs) are considered as a promising alternative to threaten the reign of lithium ion batteries (LIBs) among various next-generation rechargeable energy storage systems, including magnesium ion, metal air, and metal sulfur batteries. Since both sodium and lithium are located in Group 1 of the periodic table, they share similar (electro)chemical properties with regard to ionization pattern, electronegativity, and electronic configuration; thus the vast number of compounds developed from LIBs can provide guidance to design electrode materials for SIBs. However, the larger ionic radius of the sodium cation and unique (de)sodiation processes may also lead to uncertainties in terms of thermodynamic or kinetic properties. Herein, we present the first construction of SIBs based on inorganic fullerene-like (IF) MoS2 nanoparticles. Closed-shell-type structures, represented by C60 fullerene, have largely been neglected for studies of alkali-metal hosting materials due to their inaccessibility for intercalating ions into the inner spaces. However, IF-MoS2, with faceted surfaces, can diffuse sodium ions through the defective channels, thereby allowing reversible sodium ion intercalation/deintercalation. Interestingly, Re-doped MoS2 showed good electrochemical performances with fast kinetics (ca. 74 mA h g−1 at 20 C). N-type doping caused by Re substitution of Mo in IF-MoS2 revealed enhanced electrical conductivity and an increased number of diffusion defect sites. Thus, chemical modification of fullerene-like structures through doping is proven to be a promising synthetic strategy to prepare improved electrodes.  相似文献   
957.
958.
The magnetron sputtering amorphous diamond-like carbon film is successfully deposited by SiNx interlayer approach. The scanning electron microscopy study reveals the creation of high uniform surface micrograph diamond-like carbon films with SiNx interlayer. For comparison, diamond-like carbon films with different interlayers are also grown. The Raman spectra are analyzed in order to characterize the stressed induce peak shifts of the films. The interactions of C atom with Si(100) and SiNx surface are studied by density functional theory simulation. The effects of interlayers on the films deposition and the considering deposition mechanism are discussed. It is suggested that the diamond-like carbon and SiNx bilayer structure can help to render applications in protective coatings and high quality silicon on diamond related radiation tolerance devices.  相似文献   
959.
A. K. Wong  N. Rajic  Q. Nguyen 《Strain》2015,51(1):1-15
Thermoelastic stress analysis (TSA) has been around for the past 30 years, but to date, it is still a very much underrated and under‐utilised experimental technique. Although there are devoted groups of practitioners in some industries, this technology is not well known within the aerospace sector. In contrast, the Aerospace Division of the Defence Science and Technology Organisation (DSTO) in Australia has been in the forefront of this technology for some time, achieving many pioneering feats. This paper gives a brief introduction to the development of this technology from a historical perspective, then focuses on a number of innovations that have stemmed from DSTO, including the development and application of the world's first focal plane array based TSA system and, more recently, the development of small and robust microbolometer based systems. For the latter, it is shown that despite nominally poorer temperature sensitivities, they make ideal TSA devices and can in some cases outperform their much more expensive photon detector counterparts. Because of this, together with the enormous practical advantages of microbolometers, the future of TSA is shown to be brighter than ever. Specifically, it is argued that such TSA systems can play a major role in the pervasive and persistent surveillance of full scale fatigue testing of aircraft structures. By detecting both design and developing faults early, it can effectively relieve cost and schedule penalties that are often associated with unanticipated failures. To realise this capability, integration of this technology with autonomous systems will be important, and some preliminary but promising results from a technology demonstrator program are presented.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号