首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   8篇
  国内免费   1篇
电工技术   11篇
综合类   3篇
化学工业   59篇
金属工艺   12篇
机械仪表   4篇
建筑科学   3篇
能源动力   10篇
轻工业   15篇
无线电   7篇
一般工业技术   46篇
冶金工业   5篇
原子能技术   5篇
自动化技术   34篇
  2023年   2篇
  2022年   3篇
  2021年   12篇
  2020年   5篇
  2019年   5篇
  2018年   11篇
  2017年   3篇
  2016年   7篇
  2015年   2篇
  2014年   8篇
  2013年   19篇
  2012年   19篇
  2011年   14篇
  2010年   18篇
  2009年   12篇
  2008年   17篇
  2007年   6篇
  2006年   9篇
  2005年   10篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1978年   1篇
排序方式: 共有214条查询结果,搜索用时 15 毫秒
41.
42.
The effects of substitution of Y or Bi on the low-temperature structural phase transition, electronic anomaly and superconductivity have been studied in La2-y-xYyBaxCuO La2-y-xBiyBaxCuO4 and La1.9-y-xTb0.1BiySrxCuO4 with x = 1/8. Moreover, an electronic anomaly, which is analogous to those observed in La2–xBaxCuO4 and La1.6-xNd0.4SrxCuO4 with x 1/8, has been found below about 60 K in the thermoelectric power measurements for the Zn-substituted La2–xSrxCu1–yZnyO4 with x 0.115 and y = 0.01 – 0.02. These experimental results support the conclusions by Tranquada et al. that static order of the stripe correlations of holes and spins, owing to pinning by the low-temperature structure or impurities (Zn in this case), is the origin of the electronic anomaly, leading to the suppression of superconductivity.  相似文献   
43.
This paper presents an innovative versatile method aiming at rapid fabrication of a master for polydimethylsiloxane (PDMS) molding. This technology is relying on liquid dielectrophoresis electromechanical microfluidic transduction for programmable ultraviolet (UV) glue manipulation. It enables formation of the master in a tailor-made approach, avoiding the need of micromachined structures unlike in conventional methods. The principle is simple: UV glue, while in liquid phase, is actuated onto an array of electrodes patterned on a Si substrate and cured afterward by UV exposure. The silicon chip and the glue microstructures defined atop of it then play the role of a master for PDMS molding. The glue microstructures’ shape is hemispherical which is of high interest for many microfluidic applications. This concept is assessed and validated with two different PDMS chip replica designs, both of them illustrating representative applications in continuous microfluidic: a T-junction design for inflow droplet generation and a “Quake” type valve. Lastly, this protocol has shown to be recyclable since the UV glue microstructures once formed can be easily removed by immersion in an acetone bath, such as the chip is reset and can be reprogrammed afterward to build another glue channels geometry.  相似文献   
44.
The present work reports how metallurgical factors such as grain size and chemical composition of substrate affect the current behavior during anodization and the morphology of resulting formed oxide layers. The grain size of pure Ti sheet is controlled by the accumulative roll-bonding (ARB) process. Tubular oxide layers are formed on the ARB-processed Ti sheets with different grain sizes, but grain size does not affect the length, diameter of tubes and the degree of tube arrangement. The effect of chemical composition is examined using Ti-Zr alloys (Ti-20Zr, Ti-50Zr, Ti-80Zr) that can consist of a single phase, meaning that homogeneous tube formation can be achieved. With increasing Zr content in the alloys, tube diameter decreases while tube length increases. For the Ti-50Zr and Ti-80Zr, self-organization is achieved on two size scales, that is, nanotube arrays with two distinct diameters are observed. TEM observation revealed that anodic oxide layers are in crystalline state only in the case of pure Zr.  相似文献   
45.
How can Euler diagrams support non-consequence inferences? Although an inference to non-consequence, in which people are asked to judge whether no valid conclusion can be drawn from the given premises (e.g., All B are A; No C are B), is one of the two sides of logical inference, it has received remarkably little attention in research on human diagrammatic reasoning; how diagrams are really manipulated for such inferences remains unclear. We hypothesized that people naturally make these inferences by enumerating possible diagrams, based on the logical notion of self-consistency, in which every (simple) Euler diagram is true (satisfiable) in a set-theoretical interpretation. The work is divided into three parts, each exploring a particular condition or scenario. In condition 1, we asked participants to directly manipulate diagrams with size-fixed circles as they solved syllogistic tasks, with the result that more reasoners used the enumeration strategy. In condition 2, another type of size-fixed diagram was used. The diagram layout change interfered with accurate task performances and with the use of the enumeration strategy; however, the enumeration strategy was still dominant for those who could correctly perform the tasks. In condition 3, we used size-scalable diagrams (with the default size as in condition 2), which reduced the interfering effect of diagram layout and enhanced participants’ selection of the enumeration strategy. These results provide evidence that non-consequence inferences can be achieved by diagram enumeration, exploiting the self-consistency of Euler diagrams. An alternate strategy based on counter-example construction with Euler diagrams, as well as effects of diagram layout in inferential processes, are also discussed.  相似文献   
46.
47.
48.
Background The pathogenesis of diabetic nephropathy (DN) is a complex pathophysiological process.Its precise mechanism is not fully known. In recent years it has been recognized that synthesis of various extracelluar matrix (ECM) components may increase, and that degradation of ECM may decrease in DN. It was reported heparin could inhibit mesangial cells proliferation in vitro. The main aim of this study is to explore whether heparin inhibits proliferation of mesangial cells grown in high glucose concentration and to measure the effect of heparin on matrix metalloproteinases (MMPs) expression in mesangial cells. Methods The medium contained either low glucose (5 mmol/L) or high glucose (25 mmol/L). The concentrations of heparin in the culture medium were 0, 25, 50,100, 200 or 400 μg/mL. A metabolic (WST-1) assay was used to measure mesangial cell proliferation and Western blot analysis was used to measure MMPs expression of mesangial cells. Results Normal human mesangial cell (NHMC) proliferation was higher in high glucose (HG) medium than in low glucose (LG) medium. They showed a 1.93 fold expansion after 72 h in high glucose in contrast to a 1.63 fold expansion in low glucose. In the presence of heparin, mesangial cells proliferation was inhibited, which was more obvious at high glucose concentrations than at low glucose concentrations. In high glucose, with heparin concentration of 50, 100, 200 and 400 μg/mL, the mesangial cells showed a 0. 61 fold, 0.52 fold, 0.52 fold and 0.41 fold reductions in cell number compared to cells grown without heparin. In low glucose, only concentrations of 200 μg/mL and 400 μg/mL showed reduction in cell number, namely 0.54 fold and 0.45 fold, when compared to cells grown without heparin. In Western blot analysis,MMP1, MMP2, MMP3 and MMP9 was expressed by mesangial cells expressed in both high and low glucose concentrations, which was more prominent in high glucose medium. Incubation of heparin further increased expression of MMP1, MMP2, MMP3 and MMP9. Conclusions This study suggests that glucose can accelerate mesangial cell proliferation while heparin can reduce proliferation, being more obvious at high glucose concentrations. Higher glucose concentrations led to increased MMP expression, which may take part in the regulation of mesangial matrix synthesis and degradation. Addition of heparin resulted in a corresponding increase in MMP expression, most notably at high glucose concentrations, indicating a potentially renoprotective role in DN.  相似文献   
49.
Alzheimer’s disease is a chronic neurodegenerative disorder and represents the main cause of dementia globally. Currently, the world is suffering from the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus that uses angiotensin-converting enzyme 2 (ACE2) as a receptor to enter the host cells. In COVID-19, neurological manifestations have been reported to occur. The present study demonstrates that the protein expression level of ACE2 is upregulated in the brain of patients with Alzheimer’s disease. The increased ACE2 expression is not age-dependent, suggesting the direct relationship between Alzheimer’s disease and ACE2 expression. Oxidative stress has been implicated in the pathogenesis of Alzheimer’s disease, and brains with the disease examined in this study also exhibited higher carbonylated proteins, as well as an increased thiol oxidation state of peroxiredoxin 6 (Prx6). A moderate positive correlation was found between the increased ACE2 protein expression and oxidative stress in brains with Alzheimer’s disease. In summary, the present study reveals the relationships between Alzheimer’s disease and ACE2, the receptor for SARS-CoV-2. These results suggest the importance of carefully monitoring patients with both Alzheimer’s disease and COVID-19 in order to identify higher viral loads in the brain and long-term adverse neurological consequences.  相似文献   
50.
Antigen coating on polystyrene is prevented by detergent. We present here a simple procedure to coat detergent-solubilized antigen for subsequent panning selection of single-chain Fv (scFv), the target antigen of which was the hepatitis C virus (HCV) non-structural protein (NS) 4B, an integral membrane protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号