首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   7篇
电工技术   2篇
化学工业   23篇
机械仪表   2篇
能源动力   1篇
轻工业   6篇
水利工程   1篇
无线电   2篇
一般工业技术   7篇
冶金工业   2篇
自动化技术   7篇
  2023年   3篇
  2022年   5篇
  2021年   3篇
  2020年   2篇
  2019年   8篇
  2018年   5篇
  2017年   6篇
  2016年   2篇
  2014年   1篇
  2013年   5篇
  2012年   5篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
11.
12.
Mannosylerythritol lipid-A (MEL-A) is one of the most promising glycolipid biosurfactants, and abundantly produced by Pseudozyma yeasts. MEL-A gives not only excellent self-assembling properties but also a high binding affinity toward human immunoglobulin G (HIgG). In this study, three kinds of MEL-A were prepared from methyl myristate [MEL-A (m)], olive oil [MEL-A (o)], and soybean oil [MEL-A (s)], and the effect of interfacial properties of each MEL-A monolayer on the binding affinity toward HIgG was investigated using surface plasmon resonance (SPR) and the measurement of surface pressure (pi)-area (A) isotherms. Based on GC-MS analysis, the main fatty acids were C(8) and C(10) acids in all MEL-A, and the content of unsaturated fatty acids was 0% for MEL-A (m), 9.1% for MEL-A (o), 46.3% for MEL-A (s), respectively. Interestingly, the acid content significantly influenced on their binding affinity, and the monolayer of MEL-A (o) gave a higher binding affinity than that of MEL-A (m) and MEL-A (s). Moreover, the mixed MEL-A (o)/ MEL-A (s) monolayer prepared from 1/1 molar ratio, which comprised of 27.8% of unsaturated fatty acids, indicated the highest binding affinity. At the air/water interface, MEL-A (o) monolayer exhibited a phase transition at 13 degrees C from a liquid condensed monolayer to a liquid expanded monolayer, and the area per molecule significantly expanded above 13 degrees C, while the amount of HIgG bound to the liquid expanded monolayer was much higher than that bound to liquid condensed monolayer. The binding affinity of MEL-A toward HIgG is thus likely to closely relate to the monolayer packing density, and may be partly controlled by temperature.  相似文献   
13.
Low‐temperature‐processed inverted perovskite solar cells (PVSCs) attract increasing attention because they can be fabricated on both rigid and flexible substrates. For these devices, hole‐transporting layers (HTLs) play an important role in achieving efficient and stable inverted PVSCs by adjusting the anodic work function, hole extraction, and interfacial charge recombination. Here, the use of a low‐temperature (≤150 °C) solution‐processed ultrathin film of poly[(9,9‐dioctyl‐fluorenyl‐2,7‐diyl)‐co‐(4,4′‐(N‐(4‐secbutylphenyl) diphenylamine)] (TFB) is reported as an HTL in one‐step‐processed CH3NH3PbI3 (MAPbI3)‐based inverted PVSCs. The fabricated device exhibits power conversion efficiency (PCE) as high as 20.2% when measured under AM 1.5 G illumination. This PCE makes them one of the MAPbI3‐based inverted PVSCs that have the highest efficiency reported to date. Moreover, this inverted PVSC also shows good stability, which can retain 90% of its original efficiency after 30 days of storage in ambient air.  相似文献   
14.
A new extractant biuret(C8) is synthesized and tested for solvent extraction of hard acid metals, for example, actinides, and soft acid metals. This compound has a central frame similar to that of malonamide but with an additional amino functional group introduced into the central framework; in this case, both the amidic oxygen atoms and the amino nitrogen atom may bond with metals. We found that both hard and soft acid metals can be extracted from nitric or perchloric acids to n-dodecane using biuret(C8). It is clear that D(Pd, Pu, U) values of approximately 100 can be obtained using 0.1 M biuret(C8)/n-dodecane.  相似文献   
15.
Liquid‐phase mixing is a common operation, often performed in vessels using mechanically rotating impellers. To enhance axial mixing the vessels are generally equipped with baffles; however, in industries where cleaning the vessel interior is a major concern, i.e. food and pharmaceuticals, and crystallization, where baffles can disturb particle growth, unbaffled vessels are preferred. One method of agitation in unbaffled vessels is an impeller that periodically changes either the direction or rate of rotation: so‐called unsteady rotation. For use in an enhanced agitation vessel, an agitation technology using an unsteady forward–reverse rotating impeller in an unbaffled vessel was investigated. Such unsteady agitation is expected to enhance mixing. However, knowledge of the liquid flows in such an apparatus remains elusive. Thus an aim of this work was to characterize the circulation flow in such a system. Circulation by a disk turbine impeller with six flat blades was studied through examination of tracer particle trajectories. Images showing flow patterns with the forward–reverse rotating impeller resembled those obtained with a unidirectionally rotating impeller in a baffled vessel. The pattern was characterized by a circulation loop whose pathway exits from the impeller rotational region and returns to that region past the wall and bottom of the vessel. Time‐series particle tracking velocimetry (PTV) images obtained during one forward–reverse rotation of the impeller showed that the flow near the vessel wall reduced the periodic fluctuation downstream and that a flow that was almost independent of time was induced near the vessel bottom. For the flow from the bottom to the impeller, unsteadiness was provided by proximity to the impeller. Based on the intensity distribution of the unsteady flow produced by this type of forward–reverse rotating impeller within the vessel, the unsteady flow was shown to have the potential to reach the region near the vessel wall. Copyright © 2010 Society of Chemical Industry  相似文献   
16.
17.
18.
Recent progress in 2D materials has initiated new fields of molecularly thin amorphous materials with mysterious properties and structures. However, designed synthesis of molecularly thin amorphous silica still remains a challenge; whether free-standing molecularly thin amorphous silica nanosheets can exist is unclear. Here, this issue is addressed by using a new chemical protocol; solid-state surfactant lamellae with ordered alkyl-chain arrangements can serve as superior templates guiding free-standing amorphous silica nanosheets. Simple sonication of the lamellar hybrids allows exfoliation into monolayer amorphous silica nanosheets with 0.9 nm thickness. In addition, the nanosheets show the distinctive feature of high colloidal stability that enables atomic layer engineering of silica nanocoatings and dielectric nanofilms. The approach may shed new light on the properties and applications of old silica.  相似文献   
19.
Journal of Materials Science: Materials in Electronics - 1Eu2O3–3BaO–20Nb2O5–76TeO2 glass and the corresponding glass-ceramics were synthesized with the aim to investigate the...  相似文献   
20.
Flash ignition of Al nanoparticles: Mechanism and applications   总被引:1,自引:0,他引:1  
Aluminum nanoparticles (Al NPs), due to their high energy density, are important materials for propulsion systems, material synthesis and hydrogen generation. However, the oxidation mechanism of Al NPs at large heating rate remains inconclusive due to the lack of direct experimental evidence. Here, we studied the oxidation mechanism of Al NPs under large heating rate (on the order of 106 K/s or higher) by a simple flash ignition method, which uses a camera flash to ignite Al NPs. The flash ignition occurs when the Al NPs have suitable diameters and sufficient packing density to cause a temperature rise above their ignition temperatures. Importantly, transmission electron microscopy analysis reveals that the Al NPs are oxidized via the melt-dispersion mechanism, providing the first direct experimental evidence thereof. Finally, flash ignition is also applicable to the ignition of flammable gaseous, liquid and solid materials by the addition of Al NPs in lieu of sparks and hotwire igniters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号