首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   7篇
电工技术   2篇
化学工业   23篇
机械仪表   2篇
能源动力   1篇
轻工业   6篇
水利工程   1篇
无线电   2篇
一般工业技术   7篇
冶金工业   2篇
自动化技术   7篇
  2023年   3篇
  2022年   5篇
  2021年   3篇
  2020年   2篇
  2019年   8篇
  2018年   5篇
  2017年   6篇
  2016年   2篇
  2014年   1篇
  2013年   5篇
  2012年   5篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有53条查询结果,搜索用时 46 毫秒
41.
42.
43.
Double‐array structures have been widely used to implement dictionaries with string keys. Although the space efficiency of dynamic double‐array dictionaries tends to decrease with key updates, we can still maintain high efficiency using existing methods. However, these methods have practical problems of time and functionality. This paper presents several efficient rearrangement methods to solve these problems. Through experiments using real‐world datasets, we demonstrate that the proposed rearrangement methods are much more practical than existing methods.  相似文献   
44.
45.
A possibility of the production of carbon nanotubes from heavy hydrocarbon resources derived from natural asphalt was examined. Before the use of heavy hydrocarbons, pure compound, toluene was used as the pure substrate to establish the reaction system for the production of carbon nanotubes. Carbon nanotubes were found in the carbonaceous product deposited on inner wall of a quartz tube and at the exit of the tube. The carbonaceous product was observed by scanning electron microscopy and analyzed by temperature-programmed oxidation experiments to identify the presence of carbon nanotubes. Based on the reaction system and reaction conditions with toluene, the production of nanotubes was examined by using heavy hydrocarbons such as asphaltene and maltene fractions from a natural asphalt. Under selected reaction conditions including the reaction temperature and the amount of the catalyst, carbon nanotubes with a diameter of 30–60 nm were found.  相似文献   
46.
For an unbaffled agitated vessel with an unsteadily forward–reverse rotating impeller whose rotation proceeds with repeated acceleration, deceleration, and stop–reverse processes, liquid flow was studied through visualisation and measurement using particle tracking velocimetry (PTV). A disk turbine impeller with six flat blades was used with varied height settings. The impeller clearance and its forward–reverse rotation cycle characterised the impeller region flow: the radially outward flow in the deceleration process for the larger clearance relative to the vessel diameter of 1/3, and the axially downward flow in the acceleration process for the smaller clearance relative to the vessel diameter of 1/8. The flow patterns within the vessel resulting from the impeller's larger and smaller clearances were outlined, respectively, by double loops and a single loop of circulation, resembling the pattern produced by unidirectionally rotating turbine‐type impellers. The discharge flow was revealed to contain a comparable level of periodic circumferential velocity component, irrespective of the impeller clearance.  相似文献   
47.
In this paper, we deal with the node capacitated in-tree packing problem. The input consists of a directed graph, a root node, a node capacity function and edge consumption functions for heads and tails. The problem is to find a subset of rooted spanning in-trees and their packing numbers, where the packing number of an in-tree is the number of times it is packed, so as to maximize the sum of packing numbers under the constraint that the total consumption of the packed in-trees at each node does not exceed the capacity of the node. This problem is known to be NP-hard.We propose a two-phase heuristic algorithm for this problem. In the first phase, it generates candidate spanning in-trees to be packed. The node capacitated in-tree packing problem can be formulated as an IP (integer programming) problem, and the proposed algorithm employs the column generation method for the LP (linear programming) relaxation problem of the IP to generate promising candidate in-trees. In the second phase, the algorithm computes the packing number of each in-tree. Our algorithm solves this second-phase problem by first modifying feasible solutions of the LP relaxation problem and then improving them with a greedy algorithm. We analyze upper and lower bounds on the solution quality of such LP-based algorithms for this problem.We conducted computational experiments on graphs used in related papers and on randomly generated graphs. The results indicate that our algorithm has a better performance than other existing methods.  相似文献   
48.
Simulation of incompressible fluid flow-elastic structure interactions is targeted by using fully-Lagrangian mesh-free computational methods. A projection-based fluid model(moving particle semi-implicit(MPS)) is coupled with either a Newtonian or a Hamiltonian Lagrangian structure model(MPS or HMPS) in a mathematically-physically consistent manner. The fluid model is founded on the solution of Navier-Stokes and continuity equations. The structure models are configured either in the framework of Newtonian mechanics on the basis of conservation of linear and angular momenta, or Hamiltonian mechanics on the basis of variational principle for incompressible elastodynamics. A set of enhanced schemes are incorporated for projection-based fluid model(Enhanced MPS), thus, the developed coupled solvers for fluid structure interaction(FSI) are referred to as Enhanced MPS-MPS and Enhanced MPS-HMPS. Besides, two smoothed particle hydrodynamics(SPH)-based FSI solvers, being developed by the authors, are considered and their potential applicability and comparable performance are briefly discussed in comparison with MPS-based FSI solvers. The SPH-based FSI solvers are established through coupling of projection-based incompressible SPH(ISPH) fluid model and SPH-based Newtonian/Hamiltonian structure models, leading to Enhanced ISPH-SPH and Enhanced ISPH-HSPH. A comparative study is carried out on the performances of the FSI solvers through a set of benchmark tests, including hydrostatic water column on an elastic plate,high speed impact of an elastic aluminum beam, hydroelastic slamming of a marine panel and dam break with elastic gate.  相似文献   
49.
The fabrication of artificial blood vessel remains an ongoing challenge for cardiovascular tissue engineering. Full biocompatibility, proper physiological, and immediate availability have emerged as central issues. To address these issues, the dual-network composite scaffolds were fabricated by coating the electrospun nanofibers-based tubes with poly(vinyl alcohol) (PVA) hydrogel, which could increase the cell viability and show the potential for controlling the composition, structure, and mechanical properties of scaffolds. Herein, the tubular scaffolds having an inner diameter of 2 mm, were composed with poly(1,4 cyclohexane dimethylene isosorbide terephthalate)/PVA. The morphology examination showed that tubular structure was dimensionally stable and suitable for an artificial blood vessel. Fourier transform infrared spectra, wetting behavior, stress–strain behavior, and Thiazolyl Blue Tetrazolium Bromide (3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide) analysis also showed that the composite scaffolds have good chemical interactions between poly(1,4 cyclohexane dimethylene isosorbide terephthalate) (PICT) and PVA, blended PICT/PVA tubes showed the appropriate wetting behavior, it achieved the appropriate breaking strength and adequate pliability up to 47.5% and in vitro assessment showed that blended PICT/PVA scaffolds have the appropriate cell viability and nontoxic, respectively. On the basis of characterizations results, it was concluded that resultant scaffolds would be addressed to fulfill the requirements such as biocompatibility, dimensional stability, adequate elongation, breaking strength, immediate availability, and proper for physiologically. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47222.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号