首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1312篇
  免费   14篇
  国内免费   1篇
电工技术   46篇
综合类   2篇
化学工业   268篇
金属工艺   24篇
机械仪表   40篇
建筑科学   24篇
能源动力   50篇
轻工业   127篇
水利工程   3篇
无线电   103篇
一般工业技术   173篇
冶金工业   361篇
原子能技术   47篇
自动化技术   59篇
  2024年   9篇
  2023年   15篇
  2022年   6篇
  2021年   18篇
  2020年   9篇
  2019年   16篇
  2018年   18篇
  2017年   16篇
  2016年   23篇
  2015年   8篇
  2014年   28篇
  2013年   56篇
  2012年   32篇
  2011年   55篇
  2010年   39篇
  2009年   49篇
  2008年   56篇
  2007年   41篇
  2006年   41篇
  2005年   40篇
  2004年   40篇
  2003年   47篇
  2002年   36篇
  2001年   25篇
  2000年   25篇
  1999年   31篇
  1998年   126篇
  1997年   73篇
  1996年   54篇
  1995年   36篇
  1994年   31篇
  1993年   32篇
  1992年   17篇
  1991年   13篇
  1990年   7篇
  1989年   10篇
  1988年   13篇
  1987年   13篇
  1986年   13篇
  1985年   9篇
  1984年   7篇
  1983年   10篇
  1982年   6篇
  1980年   5篇
  1979年   13篇
  1978年   6篇
  1977年   12篇
  1976年   16篇
  1974年   4篇
  1972年   6篇
排序方式: 共有1327条查询结果,搜索用时 15 毫秒
11.
12.
This paper presents the preliminary results of efforts to improve dry processed electron beam resist materials using plasma polymerization coating technology. Three approaches investigated were chemical susceptibility modification, the use of multilayer resist structures, and the effect of grafting reactions.  相似文献   
13.
Rhodococcus jostii RHA1 accumulates chlorobenzoates (CBA) during the degradation of polychlorinated biphenyls (PCBs). CBA degradation is considered one of the rate-limiting steps in the complete degradation of PCBs. To reduce the accumulation of CBAs, the upper pathway enzyme genes for PCB degradation of RHA1 were introduced into a CBA-degrading bacterium, Burkholderia sp. NK8. The resulting recombinant strain exhibited no biphenyl 2,3-dioxygenase (BphA) activity encoded by bphAaAbAcAd genes, which encode the large and small subunits of the terminal oxygenase component and the ferredoxin and reductase subunits responsible for electron transfer from NADH to the large subunit. The remaining enzyme genes involved in the transformation of biphenyl to benzoate, bphB2C1D1, which encode dehydrogenase, ring-cleavage dioxygenase and hydrolase, conferred activities to NK8. To obtain the BphA activity of RHA1 in NK8, sets of BphA genes were constructed by combining the bphAaAbAcAd genes of RHA1 and bphA3A4 of Pseudomonas pseudoalcaligenes KF707, encoding the ferredoxin and reductase subunits. Hybrid derivatives of BphA containing the KF707 bphA3 conferred BphA activity to NK8, and a derivative containing the RHA1 bphAaAb and KF707 bphA3A4 genes exhibited the highest BphA activity. A plasmid containing the RHA1 bphAaAb and KF707 bphA3A4 genes plus the RHA1 bphB2C1D1 genes was constructed and introduced into NK8. The resulting recombinant strain efficiently degraded 2-, 3- and 4-chlorobiphenyls with an apparent reduction in CBA accumulation in comparison to the recombinant mutant strain, which had an insertion in the cbeA gene to inactivate CBA dioxygenase.  相似文献   
14.
Although the effects of syntrophic relationships between bacteria and methanogens have been reported in some environments, those on cellulose decomposition using cellulolytic bacteria from methanogenic reactors have not yet been examined. The effects of syntrophic co-culture on the decomposition of a cellulosic material were investigated in a co-culture of Clostridium clariflavum strain CL-1 and the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus strain ΔH and a single-culture of strain CL-1 under thermophilic conditions. In this study, strain CL-1 was newly isolated as a cellulolytic bacterium from a thermophilic methanogenic reactor used for degrading garbage slurry. The degradation efficiency and cell density of strain CL-1 were 2.9- and 2.7-fold higher in the co-culture than in the single-culture after 60?h of incubation, respectively. Acetate, lactate and ethanol were the primary products in both cultures, and the concentration of propionate was low. The content of acetate to total organic acids plus ethanol was 59.3% in the co-culture. However, the ratio decreased to 24.9% in the single-culture, although acetate was the primary product. Therefore, hydrogen scavenging by the hydrogenotrophic methanogen strain ΔH could shift the metabolic pathway to the acetate production pathway in the co-culture. Increases in the cell density and the consequent acceleration of cellulose degradation in the co-culture would be caused by increases in adenosine 5'-triphosphate (ATP) levels, as the acetate production pathway includes ATP generation. Syntrophic cellulose decomposition by the cellulolytic bacteria and hydrogenotrophic methanogens would be the dominant reaction in the thermophilic methanogenic reactor degrading cellulosic materials.  相似文献   
15.
This work addresses the discrepancy in the literature regarding the effects of sulfuric acid (H(2)SO(4)) on elemental Hg uptake by activated carbon (AC). H(2)SO(4) in AC substantially increased Hg uptake by absorption particularly in the presence of oxygen. Hg uptake increased with acid amount and temperature exceeding 500 mg-Hg/g-AC after 3 days at 200 °C with AC treated with 20% H(2)SO(4). In the absence of other strong oxidizers, oxygen was able to oxidize Hg. Upon oxidation, Hg was more readily soluble in the acid, greatly enhancing its uptake by acid-treated AC. Without O(2), S(VI) in H(2)SO(4) was able to oxidize Hg, thus making it soluble in H(2)SO(4). Consequently, the presence of a bulk H(2)SO(4) phase within AC pores resulted in an orders of magnitude increase in Hg uptake capacity. However, the bulk H(2)SO(4) phase lowered the AC pore volume and could block the access to the active surface sites and potentially hinder Hg uptake kinetics. AC treated with SO(2) at 700 °C exhibited a much faster rate of Hg uptake attributed to sulfur functional groups enhancing adsorption kinetics. SO(2)-treated carbon maintained its fast uptake kinetics even after impregnation by 20% H(2)SO(4).  相似文献   
16.
The effects of the volume and pH of the impregnation solution and of the calcination conditions were examined on the physicochemical and catalytic properties of a 13 wt% MoO3/Al2O3 extrudate catalyst. The Al2O3 support and drying procedures (static conditions without flowing air) were fixed in the preparations. In the present series of catalysts, the amount of crystalline MoO3 was marginally small. It was found that the dispersion of Mo oxide species increased as the volume of the impregnation solution increased, gradually approaching a maximum value. The increase in pH (2–8) of the impregnation solution was found to reduce the dispersion of Mo oxide species. The Mo dispersion increased slightly for the impregnation catalysts as the calcination temperature increased (673–873 K), whereas it decreased for the equilibrium adsorption catalysts. The effects of the calcination atmosphere (with or without flowing air, or with flowing humid air) were very small on the dispersion of Mo oxide species under the present preparation conditions. On the other hand, the methanol oxidation activity of MoO3/Al2O3 was sensitive to the preparation parameters examined here. It was demonstrated by means of EPMA and XPS that a considerable migration of Mo took place during the calcination.

In the present study on the preparation of a 13 wt% MoO3/Al2O3 catalyst, an impact index is proposed to measure the magnitude of the effects of the respective parameter(s) on the physicochemical and catalytic properties. With the Mo dispersion, the effects of the preparation parameter decreased in the order, surface area of the support >> drying process > volume of the impregnation solution > pH, calcination temperature and atmosphere. The size of the impact index for the dispersion of Mo sulfide species is 70–75% of that for the Mo oxide species. The HDS activity of the catalyst was less affected by the preparation parameters than the Mo sulfide dispersion. The preparation parameters affected the segregation of Mo on the outer surface of extrudates in a decreasing order: drying process > volume of the impregnation solution > pH, calcination conditions. It was found that the oxidation of methanol was affected most intensely by the drying procedures. The volume of the impregnation solution, calcination conditions and pH of the impregnation solution also strongly affected the oxidation activity. The impact index suggests that the sensitivity to the preparation variables of the physicochemical and catalytic properties of MoO3/Al2O3 decreases in the order, methanol oxidation activity > surface Mo segregation > Mo oxide dispersion > Mo sulfide dispersion > HDS activity.  相似文献   

17.
The diffusion and adsorption of C.I. Direct Yellow 12 and Blue 15 in water-swollen ordinary cellophane sheets were examined at various ionic strengths. The concentration dependence of apparent diffusion coefficients, Dc, for these dyes was obtained from the diffusion profiles in the substrate, which were measured by the use of the cylindrical film roll method. The decrease of apparent porosity with an increase in the amounts of adsorption was observed. To explain the diffusion/adsorption behaviors of these systems, a variable porosity model was proposed and was applied to analyze the concentration dependence of Dc's. The diffusion/adsorption behaviors of these dyes could be quantitatively described by this model at relatively low ionic strengths. At higher ionic strengths and/or lower values of C, i.e., at the large values of Cim/Cm, where the C's are the concentrations of immobilized (suffix im) and mobile (suffix m) species, it needed to introduce the concept of dynamic equilibria which occurred simultaneously with diffusion but deviated from the true equiliblia measured by the adsorption experiments.  相似文献   
18.
The diffusion of a reactive disperse dye with a vinylsulfonyl group accompanied by simultaneous reaction with the amino end groups in nylon 6 was examined by the method of cylindrical film roll at 70°C and pH 2.2–8.0. The experimental diffusion profiles of the active and fixed species of the dye in nylon 6 were confirmed to be described by the diffusion equation accompanied by the chemical reaction with substrate taking the limited amount of the end groups into account, where the active species of dye were assumed to react only with the free base of amino end groups. The completion of the reaction with the amino end groups was observed in the first layer from the surface at pH 6.0–8.0. The value of diffusion coefficient was constant (8.0 × 10?10 cm2/s) at all the pH's. The product of the second-order rate constant, k2, of reaction of the dye and the dissociation constant, Ka, of the amino end groups was constant (k2Ka = 4.0 × 10?9 s?1) at pH 2.2–8.0. The k2 values of the reaction with various substrates for vinylsulfonyl and monochlorotriazinyl-reactive dyes were compared and the practical dyeing conditions were discussed.  相似文献   
19.
Unconventional pretreatment, that is, delignification and the addition of guanidine phosphate, was performed for the synthesis of activated carbon having a high specific surface area from bamboo by physical activation. The values of the specific surface area, total pore volume, and average pore size depended on the amount of added guanidine phosphate and the CO2 activation time. The amount of the added guanidine phosphate under the optimum conditions for the highest specific surface area was much lower than that of the phosphorous acid chemical activator under conventional conditions. The N2 adsorption isotherms of all the samples were type I, which means that micropores were dominant. The pore sizes of the samples in this study were similar to that of the physically-activated carbon. Therefore, the activation process was presumed to be essentially not chemical, but physical. The relation between the yield and the specific surface area improved with the addition of guanidine phosphate. The reason for the improvement may be the change in the reactivity of the carbon material generated during the heating process. The maximum specific surface area was ca. 2000 m2 g?1, which is a high value for a physically-activated carbon.  相似文献   
20.
The progression of chronic liver disease differs by etiology. The aim of this study was to elucidate the difference in disease progression between chronic hepatitis C (CHC) and nonalcoholic fatty liver disease (NAFLD) by means of fibrosis markers, liver function, and hepatic tissue blood flow (TBF). Xenon computed tomography (Xe-CT) was performed in 139 patients with NAFLD and 152 patients with CHC (including liver cirrhosis (LC)). The cutoff values for fibrosis markers were compared between NAFLD and CHC, and correlations between hepatic TBF and liver function tests were examined at each fibrosis stage. The cutoff values for detection of the advanced fibrosis stage were lower in NAFLD than in CHC. Although portal venous TBF (PVTBF) correlated with liver function tests, PVTBF in initial LC caused by nonalcoholic steatohepatitis (NASH-LC) was significantly lower than that in hepatitis C virus (C-LC) (p = 0.014). Conversely, the liver function tests in NASH-LC were higher than those in C-LC (p < 0.05). It is important to recognize the difference between NAFLD and CHC. We concluded that changes in hepatic blood flow occurred during the earliest stage of hepatic fibrosis in patients with NAFLD; therefore, patients with NAFLD need to be followed carefully.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号