首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   9篇
电工技术   3篇
化学工业   62篇
金属工艺   4篇
机械仪表   7篇
建筑科学   7篇
能源动力   10篇
轻工业   58篇
无线电   8篇
一般工业技术   36篇
冶金工业   15篇
原子能技术   1篇
自动化技术   18篇
  2024年   10篇
  2023年   3篇
  2022年   9篇
  2021年   17篇
  2020年   17篇
  2019年   13篇
  2018年   21篇
  2017年   16篇
  2016年   9篇
  2015年   4篇
  2014年   14篇
  2013年   14篇
  2012年   9篇
  2011年   14篇
  2010年   13篇
  2009年   11篇
  2008年   6篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2000年   2篇
  1995年   1篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
排序方式: 共有229条查询结果,搜索用时 15 毫秒
11.
    
Purpose: To evaluate the wetting ability and the microtensile bond strength of adhesive systems in various depths of dentin. Materials and Method: 48 extracted human molars cut in half in buccolingual direction. Buccal and lingual surfaces were used to obtain deep (n = 48) and superficial (n = 48) dentin. Groups were divided into 4 subgroups: Self-etch (CSE), etch&rinse (SB), multi-mode self-etch (SAU) and multimode etch&rinse (EAU) adhesive systems. 3 consecutive contact-angle measurements were obtained: T0- 3 μl drop of distilled water on dentin; T1-Droplet of the adhesive; T2- Distilled water after polymerization of the adhesive. After composite build-ups, microtensile measurements were performed. Contact angle data were analysed with analysis of variance for repeated measures. Bond strength data were analyzed by repeated measures analysis of variance, comparisons were made according to the logarithmic values (p < 0.05). Results: The difference between groups was not significant regardless of dentin depth for all measurements (p < 0.05). All groups except CSE enhanced the wetting ability of the adhesive but reduced the wetting ability of distilled water after application of the adhesive (p < 0.05). Regarding adhesive systems, the groups showed no significant difference between bond strengths to various depths of dentin except SAU (p > 0.05); in SAU, bond strength to deep dentine were significantly higher than superficial dentin (p < 0.05). Regarding adhesives’ bond strength, CSE showed significantly greater values than the other groups (p < 0.05). Conclusion: The cavity depth does not affect the bonding ability for all adhesive systems; self-etch adhesive systems might be a better choice since different adhesives may influence the wetting ability and microtensile bond strength of the dentin substrates.  相似文献   
12.
The aim of this in vitro study was to evaluate the effects of chlorhexidine gluconate (2%), sodium hypochloride (2.5%), ozone gas, and boric acid at different concentrations (1%, 3%, 5%, and 7%) on microleakage from composite restorations.

In a total of 80 extracted human canine teeth, a class V cavity was opened on the buccal surface and the samples were separated into eight groups. In the control group, no procedure was applied for cavity disinfection, then composite restoration (Z250, 3M) was made using single-stage, self-etch adhesive (Single Bond 3M). In the other groups, seven different disinfectants were used, then the cavity was restored. The teeth were split into two in the buccolingual direction, parallel to the long axes. Stain penetration was examined under stereomicroscope and scored. Examination with SEM was made on one sample from each group, selected at random. Statistical evaluations were made using Dunnett C Post Hoc Comparison and Kruskal–Wallis H tests.

In the occlusal region evaluation, the groups with the lowest level of leakage were the 3% and 5% boric acid groups, and the highest levels of microleakage were determined in the chlorhexidine group and the 1% boric acid group. In the gingival region, the lowest level of microleakage was in the 5% boric acid group and the highest levels were determined in the 1% and 7% boric acid groups.

Boric acid disinfectants used at suitable concentrations were not seen to create a risk in respect of microleakage.  相似文献   

13.
14.
Bio-/environment-friendly cationic gemini surfactant, ethane-1,2-diyl bis(N,N-dimethyl-N-hexadecylammoniumacetoxy)dichloride, referred to as 16-E2-16, was synthesized and characterized. Corrosion inhibition effects of 16-E2-16 on mild steel (MS) surface in 1 M HCl solution at 30, 40, 50 and 60 °C were evaluated using gravimetric analysis, potentiodynamic polarisation and electrochemical impedance spectroscopy measurements. The nature of the protective inhibitor film formed on the MS surface was analysed by SEM, EDAX and FT-IR, while TGA was used to assure the thermal behaviour and stability of the film at high temperature. The formation of [inhibitor-Fe2+] on the surface of MS was confirmed by UV–visible spectroscopy. The inhibition efficiency of the studied inhibitor increased with increasing concentration and solution temperature. The compound behaved as a mixed type inhibitor and acted by blocking the electrode surface by means of adsorption obeying the Langmuir adsorption isotherm. Surface active properties and corrosion inhibition effects of 16-E2-16 in the presence of inorganic (NaI) and organic (NaSal) salts were also investigated and are discussed. Density functional theory calculations have been carried out to correlate the efficiency of the compound with its intrinsic molecular parameters.  相似文献   
15.
    
Among the thermoplastic elastomers that play important roles in the polymer industry due to their superior properties, styrene-based species and polyurethane block copolymers are of great interest. Poly(styrene-ethylene-butadiene-styrene) (SEBS) as a triblock copolymer seems to have the potential to meet many demands in different applications due to various industrial requirements where durability, biocompatibility, breaking elongation, and interfacial adhesion are important. In this study, the SEBS triblock copolymer was functionalized with natural (Satureja hortensis, SH) and synthetic (nanopowder, TiO2) agents to obtain composite nanofibers by electrospinning and electrospraying methods for use in biomedical and water filtration applications. The results were compared with thermoplastic polyurethane (TPU) composite nanofibers, which are commonly used in these fields. Here, functionalized SEBS nanofibers exhibited antibacterial effect while at the same time improving cell viability. In addition, because of successful water filtration by using the SEBS composite nanofibers, the material may have a good potential to be used comparably to TPU for the application.  相似文献   
16.
In this study, a total of forty‐five strains of lactobacilli and streptococci were determined exopolysaccharide (EPS) production in skim milk and Man Rogosa and Sharpe (MRS)/M17 medium, viscosity and proteolytic activity. The exopolysaccharide production by lactobacilli strains during growth in MRS medium was twenty‐one to 211 mg L?1, while in skim milk was to thirty‐six to 315 mg L?1. The EPS production by streptococci strains during growth in M17 medium was sixteen to 114 mg L?1, while in skim milk was to twenty‐four to 140 mg L?1. The EPS production of strains was lower in MRS/M17 medium than skim milk. Results showed that it was not clear correlation between the viscosity and EPS production of some strains. All strains were shown proteolytic activity. Positive correlations between exopolysaccharide production and proteolytic activity in skim milk were found some strains of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. These results indicated that the high exocellular protease‐producing strains can produce high EPS in skim milk. The monomer compositions of the EPSs formed by selected five strains were analysed. Mannose dominated (99–100%) on the EPS produced by L. delbrueckii subsp. bulgaricus and S. thermophilusstrains (except L. delbrueckii subsp. bulgaricus 22) in skim milk and MRS/M17 medium. Besides, the EPSs of strains in skim milk contained small amount of lactose.  相似文献   
17.
Interfacial polycondensation (IPC) is used to generate polyamide 66 (PA66) nanocomposite using sodium montmorillonite (NaMMT), which offers better thermal stability than organically modified montmorillonite. Several approaches are used to obtain different levels of dispersion for studying the factors affecting dispersion of NaMMT layered‐silicates. These approaches include dispersing NaMMT in either aqueous media or in a compatible nonaqueous medium. Moreover, clay slurry was added to the reaction media separately or in combination with the aqueous hexamethylenediamine solution, which includes either excess amine or sodium carbonate as the by‐product scavenger, in order to study the effect of sequencing on the dispersion of NaMMT. Several characterization techniques including dynamic mechanical analysis, wide angle X‐ray diffraction, and transmission electron microscopy are used to examine the structure and relate it to the mechanical properties of the nanocomposites. Results show that in situ polymerization techniques predominantly give rise to hybrid exfoliated–intercalated NaMMT structure. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   
18.
Effective dispersion of organically modified montmorillonite‐layered silicates in nylon 66 is addressed by synthesizing nanocomposites in situ via interfacial polycondensation from a suspension of silicate platelets in one of the monomer phases using either a stirred or unstirred reactor, while avoiding the detrimental heat history associated with melt compounding of this high melting polymer system. The effects of mixing methodology, reaction conditions, concentration ratio, and clay content are evaluated to elucidate process mechanisms and produce high molecular weight product. Enhanced stiffness of the nanocomposites measured by tensile modulus is related to their nanoscale morphology as characterized by transmission electron microscopy and wide angle X‐ray diffraction. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   
19.

The 2019 novel coronavirus disease (COVID-19), with a starting point in China, has spread rapidly among people living in other countries and is approaching approximately 101,917,147 cases worldwide according to the statistics of World Health Organization. There are a limited number of COVID-19 test kits available in hospitals due to the increasing cases daily. Therefore, it is necessary to implement an automatic detection system as a quick alternative diagnosis option to prevent COVID-19 spreading among people. In this study, five pre-trained convolutional neural network-based models (ResNet50, ResNet101, ResNet152, InceptionV3 and Inception-ResNetV2) have been proposed for the detection of coronavirus pneumonia-infected patient using chest X-ray radiographs. We have implemented three different binary classifications with four classes (COVID-19, normal (healthy), viral pneumonia and bacterial pneumonia) by using five-fold cross-validation. Considering the performance results obtained, it has been seen that the pre-trained ResNet50 model provides the highest classification performance (96.1% accuracy for Dataset-1, 99.5% accuracy for Dataset-2 and 99.7% accuracy for Dataset-3) among other four used models.

  相似文献   
20.
We report the results of investigating a low-voltage, polarization-insensitive, reflective-type modulator based on an epsilon-GaSe crystal and operated at the 1.960-eV line of a He-Ne laser. We demonstrate that the modulation in an Al-epsilon-GaSe-Cu device results mainly from the Franz-Keldysh effect. Relatively high speed and low operating voltage could make these modulators with Schottky-barrier contacts attractive devices in the red range of the spectrum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号